
(RCom) Reliable Communications for Teleoperated Rescue Robots

Ben Axelrod (baxelrod@cc.gatech.edu)

John Envarli (envarli@cc.gatech.edu)

Abstract

 We have created a reliable wireless

communication framework for use in highly

congested environments, and where high

throughput is desired. This is performance is

achieved through the use of multiple orthogonal

channels. Our system has been developed from

the ground up specifically for the RoboCup

Rescue competition.

 We developed a simple Additive Increase

and Decrease (AID) approach that reduces the

speed by a constant for dropped packets, and

increases the speed by a constant for delivered

packets. We were able to achieve higher

throughput with this approach than both using a

fixed optimal speed and a multiplicative decrease

method that is similar to TCP’s implementation.

We were also able to make significant

improvements to the communication system,

through implementing a sending queue,

probabilistic selection of optimal links and

retransmission of dropped packets.

1 Introduction

1.1 RoboCup Rescue

RoboCup Rescue is an annual international

competition where teleoperated robots are

deployed in a simulated disaster environment in

order to locate victims. Challenges to the

participants include mobility of the robot in the

rough terrain, building a map to present to

potential rescue workers, and solving the

teleoperation problem. In this domain,

teleoperation means wirelessly streaming enough

video data back to the human driver to quickly

locate victims and also localize his/herself in

cluttered and dimly lit environments.

This project focused on the wireless

communication aspect of teleoperation. This

problem is non-trivial due to the nature of both

wireless communications, and the RoboCup

competition. During the actual RoboCup

competition, several other leagues could

potentially be taking place at the same time, all co-

located in a rather small area. Almost every league

utilizes wireless communication, congesting

almost every frequency in the area.

Another inherent problem that needs to be

addressed is the incompatibility of TCP and

wireless. TCP assumes a packet drop is always the

result of congestion, whereas in a wireless

connection this is far from the truth: Random

packet drops happen frequently without

congestion due to interference or the inherent

imperfection of a wireless connection [1]. TCP

also ensures delivery of packets, which is not

necessarily what one wants when trying to stream

the latest possible frame of video data. We

retransmit when possible and feasible but do not

guarantee delivery of a data segment.

1.2 RCom & Multiple Links

Our hardware solution is to use three

orthogonal wireless links (via wireless bridges).

These links are on three different frequencies: 900

MHz, 3.4 GHz (via a 2.4/3.4 up/down converter),

and 802.11g (2.4 GHz). We feel that these three

frequencies will provide us with redundancy and

reliability in our communication link. Each

computer has three IP’s, creating a total of 6 IP’s

on the network (excluding IP’s of the wireless

bridges). Therefore proper routing among the

separate links is taken care of by the IP layer and

the hardware. One small hardware issue we found

when dealing with multiple links is that we could

not use the bridges in parallel on a network switch.

The bridges are designed to replicate traffic on

either side of the wireless connection to provide

the illusion of a single LAN. On the ARP layer,

bridges pick up packets that are not meant for

them. This happens back and forth, creating an

avalanche effect. We solved this issue by

installing multi-port Ethernet cards on both ends

of our link. Each wireless link corresponds to a

different Ethernet interface on the control station

side and the robot side.

Our software solution is a user-level

transport layer called, “RCom”, short for “Reliable

Communication”. It sits on top of UDP/IP.

The API RCom provides the user is very

simple. There is one function to send data over

the link, and a callback function that gets called

when data is sent to you. All knowledge of the

multiple links is transparent to the user. The user

need only specify a specific ID number that

identifies itself, and an ID number to which to

send data on the other end.

RCom is symmetric and must be run on

both ends of the link. When an RCom API is

initialized, it can be initialized as inter-thread or

client. In the inter-thread model, RCom is

automatically initialized. In the client model,

another process is the RCom server and the

server/client pair talk through a local socket. The

API in both cases are identical. Both sides of

RCom keep separate estimations of link statistics

so that data can be best routed.

2. Implementation

As previously stated, there are multiple

links in RCom. The health of these links must be

constantly monitored for effective routing. The

period of monitoring in RCom is five seconds. If

no data is received on the link during this period,

the link is labeled as ‘down’. To ensure that links

do not go down when there is no user activity on

the link, heartbeat messages are used. RCom has

a heartbeat thread that sends 5 heartbeat requests

over one second, then sleeps for another 4

seconds, making a cycle of 5 seconds. When

RCom detects a ‘downed’ link, no data is sent

over it until it comes back up as determined by the

reception of heartbeat messages.

RCom does not ‘stripe’ a user’s data over

the different links. Combining this with the fact

that each link has only one path, the system can

conclude that for a given data segment, when an

out of order packet is received, there must have

been packet loss. This greatly simplifies the

reception of data.

In order to select which link to send data

on, the RCom layer calculates moving averages of

attempted throughput and confirmed throughput.

Attempted throughput is simply how much data

has been sent on a link, while confirmed

throughput is how much data has been ACK’ed by

the receiver. RCom selects the link with the

highest ratio of confirmed to attempted

throughput. This dynamically achieves load

balancing. If a link gets congested (by other

wireless devices) or is overused, its delivery ratio

will drop, causing RCom to favor it less than the

other links.

When sending data segments that are

larger than the maximum transmission unit

(MTU), RCom handles data fragmentation itself,

and does not rely on IP fragmentation. Our

experimentation showed that this type of

fragmentation allows no temporal spacing of the

individual packets, reducing the probability of

delivering an entire segment almost to zero.

When a link sends packets too fast, it essentially

clogs itself, creating a need for customized

congestion control.

2. Customized Wireless Congestion
Control

One of the main goals of this project was

to test different congestion control algorithms.

We implemented and tested three such algorithms:

Fixed Speed, Additive Increase and Decrease

(AID), and Additive Increase / Multiplicative

Decrease (AIMD). We controlled the speed of a

connection by introducing a small latency between

individual UDP packets. The duration of this

latency inversely determines the (attempted) speed

of the link.

2.1 Fixed Speed

A simple way to set the inter-packet time is

to use the theoretical transmission limit for each

link. The theoretical limits for our three links

were calculated based on a packet size of 1500

bytes, and are summarized in Table 1. The

number of image frames per second that we can

achieve is also calculated, based on a 32869 byte,

640 x 480 jpeg compressed image (at 25%

compression).

Link Freq. Mbps ms/packet FPS

1 3.4 GHz 11 1.6 42

2 2.4 GHz 54 0.216 205

3 900 MHz 1.5 7.79 5.7
Table 1 – Theoretical Optimal Speeds.

2.2 AID (Additive Increase and
Decrease)

Part of the problem with using TCP on

wireless is due to its “Additive Increase –

Multiplicative Decrease” nature. When a 3-DUP is

detected (inferred as a packet loss), the speed is

reduced by half, mainly to achieve fairness among

the users of the network. Since a wireless

connection has a lot of random packet losses, this

causes constant minimization of speed; by

exponentially slowing down, it is almost

guaranteed to stay away from its full potential. On

the other hand, the increase of speed is a constant

amount, not enough to compensate for the random

wireless packet losses.

Our approach is to simply use additive

instead of multiplicative decrease. In our

application, fair share of bandwidth is irrelevant.

2.3 AIMD (Additive Increase /
Multiplicative Decrease)

This has the exact same implementation as

AID, but instead of decreasing the speed by a

constant (add a constant to the inter-packet time),

we divide it by a constant (multiply the inter-

packet time by a constant). This implementation is

intended to mimic TCP.

3. Other Algorithmic Improvements

The code base for RoboCup rescue team

had not been modified since May 2006. RCom

code was wide open to improvements and

algorithmic tweaks.

3.1 Send Queue

A mistake overseen by the initial

programmers was the lack of true parallelism

between the links. An RCom send was blocking

which meant applications that sent data had to

wait during the inter-packet sleep. With multiple

applications using RCom this is not a problem.

But with a single application, the system was

unable to transmit data on multiple links

concurrently. It selected different links for

different segments, only creating the illusion of

concurrency.

We addressed this problem by creating a

sending queue for each link. Each queue has a

dedicated consumer thread that takes packets from

the queue, sends it, and sleeps the inter-packet

time. Applications simply place a packet on the

queue and do not have to wait for the sleep. They

only block if the queue is full. If an application is

slowing down because of full queues, we do not

think this is a problem because the network

capacity is simply the bottleneck and speeding up

the application further would not make a

difference.

3.2 Probabilistic Selection of Links

RCom commits to a link for a given data

segment and sends all fragmented packets on the

same link. It selects the link with the highest ratio

of confirmed to attempted throughput. The

problem is that a link that is doing slightly better

than the others will constantly get picked,

preventing balancing the network load properly. In

the worst case, it can cause bursty performance,

where one link suddenly gets a lot of data to send,

fails at delivering all the attempts. Then the

system would switch to another link, repeating the

same problem.

We fixed this potential problem by using a

probabilistic approach. Each link is

probabilistically selected based on its ratio. For

example, if one link has a ratio of 0.4 and the

other two links have 0.3, the first one will get

picked 40% of the time and the others 30% of the

time. This should result in a more balanced usage

of the network.

3.3 Retransmission of Dropped
Packets

RCom never retransmitted dropped packets

in order to complete a data segment. Upon

receiving a notification of a missing fragment, it

simply discarded the rest of that data segment and

started transmitting the next one. For drops that

happen close to the end of a data segment, this is a

serious waste of effort. We implemented

retransmission of such dropped packets whenever

the sender has not yet moved on to the next data

segment (at the time it receives the notification).

3.4 Other Improvements

There were bugs regarding throughput

calculation which we detected while collecting

data. We also corrected threading-related bugs,

such as incorrect use of mutexes.

4. Experimental Results

4.1 Test Environment

On the sending side (the robot), we have a

P4 Mobile 2.0GHz running on a mini-itx

motherboard with 1.0 GB RAM. A 4-GB compact

flash card is used as a hard-drive with a IDE-CF

adapter. The receiving side (operator control

station) has a Pentium 4 – 2 GHz CPU, 1GB RAM

and a 14GB SCSI hard drive. Both computers

have a 4-port PCI Ethernet card.

4.2 Experiment Method

We tested RCom in a similar manner to its

intended use in RoboCup, where there is mostly

one way traffic of image frames. We wrote a

simple program that uses the RCom library to

continuously send a 32869-byte jpeg at 50 Hz.

We run the system until the receiver successfully

receives 1000 images. For the fixed speed

method, we used the inter-packet times calculated

in Table 1.

We tested the performance of AID, AIMD,

and the fixed theoretical approach. We also ran a

fourth case: where we looked at the plots of the

AID run, and selected inter-packet times that

produced the best throughput. We tried the fixed

approach with these inter-packet times. We call

this method, “Fixed – Observed Optimal”.

4.3 Results

The FPS measurements for the four

different approaches are summarized in Table 2.

AID did considerably better than any of the other

approaches. It was able to achieve 10 FPS over a

span of 1000 frames. Changing the optimal time

did not make much of a difference; in both cases

the FPS was a little more than 3 FPS.

Method FPS

Fixed - Theoretical Optimal 3.3

AID 10.1

AIMD 0.2

Fixed - Observed Optimal 3.2
Table 2 – Throughput performance of different

approaches.

4.3.1 Fixed-Theoretical Optimal

 We considered this the baseline test. Here

is a plot of the ACK’ed throughput on the robot

side. The total throughput indicates that we could

have achieved a much higher frame rate.

Figure 1 - Fixed-Theoretical Optimal Throughput

4.3.2 AID

 Here are plots of the inter-packet times and

ACK’ed throughput for our AID test. It illustrates

how the adaptive packet spacing changes the

throughput.

Figure 2 – AID Inter-Packet Times

Figure 3 – AID Throughput

Figure 4 – AID Confirmed to Attempted Ratio

One thing to note from these plots is the

drop in throughput near the end of the test. We

think this is due to the under-utilized Link 1

suddenly having some ACK’ed packets. This

caused the confirmed to attempted packet ratio to

jump sharply. This, in turn, caused RCom to favor

this link over the superior Link 2. We will

continue to investigate this phenomenon. One

simple fix would be to smooth the ratio, or put a

cap on how small the number of confirmed

packets can get so we don’t get huge ‘divide by 0’

ratios.

4.3.3 AIMD

AIMD performed poorly as expected.

Reducing the speed by half (as it is done in TCP)

slowed down the sender so quickly that the

process was hanging for long periods due to long

sleeps and the receiver simply stopped receiving

data. We then tried reducing the speed to 83%

instead of 50% (multiplying inter-packet time by

1.2). Even then, performance was very poor

compared to the other approaches. We suspect

that the multiplicative decrease made the inter-

packet times so large that hardly any data was

getting through. The inter-packet times this

implementation settled on were about 2 orders of

magnitude larger than our other implementations.

4.3.4 Fixed-Observed Optimal

 Because of the high performance of AID,

and poor performance of the theoretical optimum

static case, we sought to determine if our

calculated inter-packet times were just wrong. We

looked at the plot of AID’s total throughput and

found when it had peak performance.

Figure 5 – AID Total Throughput

 We then determined the observed optimal

inter-packet times (from Figure 2) to be:

Link Freq. ms/packet

1 3.4 GHz 2.3

2 2.4 GHz 0.15

3 900 MHz 4.01

Table 3 – Observed Optimal Inter-Packet Times

 To our amazement, this test actually

performed slightly worse than the calculated

theoretical case, achieving only 3.2 FPS. It seems

that an adaptive congestion control strategy is

essential to high throughput over wireless.

4.3.5 Other Observations

 It should be noted that more efficient

congestion control algorithms will transmit less

data, faster. This can be seen in Figure 6. Here

the sum of received packets is plotted for both

AID and the calculated optimum. We see that

AID received the 1000 frames in less time, and

with fewer packets.

Figure 6 – Received Packets, AID vs. Calculated

Optimal

 AID is quick to notice downed links, and

adjust itself. In this test we only had 2 working

links, and part way through the test we

intentionally downed a link by removing the

Ethernet cable from the wireless bridge. You can

see that the attempted throughput drops very

quickly, and the overall throughput only takes a

small decline.

Figure 7 – Link Drop Test – Attempted

Throughput, Robot Side

Figure 8 – Link Drop Test – Total Throughput,

Robot Side

For certain links, the round trip time on the

receiver was much higher than the sender. This is

due to queue contention on the sender between

ACKs and data segments. The receiver has no data

waiting on the queue, so ACKs are sent almost

immediately after they arrive. However, on the

sender, the ACK’s may have to wait on a full

queue, only to get placed on the tail of the queue.

This is best illustrated by Link 3 during the

calculated optimum test as seen in Figure 9. The

other links in this test did not have this problem

because their queues were not as full.

Figure 9 – Link 3 RTT, Calculated Optimal Test

Slightly related to the situation above,

another interesting observation is the relationship

between inter-packet times on the sending end,

and RTT times for the corresponding link on the

receiving end. Link 3 has the highest inter-packet

time on the sender, and it also has the highest RTT

times on the receiver. The amount of wait in the

queue is a linear function of the inter-packet time.

5. Conclusion

Our AID approach performed better than

the baseline of using a fixed speed, no matter how

optimal that speed is, showing that it is essential to

adapt to the status of the wireless even in

arrangements where there is no explicit share of

the bandwidth. Furthermore, we believe we

demonstrated that using an additive instead of

multiplicative decrease in speed was more

appropriate for our wireless setup.

We have also made substantial

improvements to the quality of the code as we

described in Section 3. After our implementation

efforts, during the experiments, we never observed

the CPU utilization of the process to be more than

0.7%.

Making improvements to this

communication work was a non-trivial task. The

main implementation class has around 1200 lines

of code. With additional files, the RCom package

has around 3200 lines of code.

The 3.5 GHz link did not have an antenna,

which probably contributed to its poor

performance.

6. Future Work

Some possible methods to test include:

• Signaling the user application when there

is a full queue, so it can potentially slow

down the sending.

• Striping data across links.

• Using the slowest link for bundled ACK

messages as suggested in [2].

• Sending redundant identical data on all

links (based on the slowest link) to

eliminate packet loss.

• Migrating the queue of a link that went

down. What has already been placed on a

queue when a link is declared down is still

sent on that link. A solution is to move this

data on to another queue.

• Eliminating out-of-order data reception.

Because the wireless bridges are different

speeds, the receiving side can get data out

of order. This can be fixed by using a

sequencing system across all the links, in

addition to within a single link.

• Implementing intelligent ways of

distinguishing between random packet

losses and congestion related losses as

done in WTCP [3] and in [4].

References

[1] Ye Tian; Kai Xu; Ansari, N., “TCP in wireless

environments: problems and solutions”,

Communications Magazine, IEEE Volume 43,

Issue 3, March 2005 Page(s):S27 - S32

[2] Kyasanur, P. Padhye, J. Bahl, P., “On the

efficacy of separating control and data into

different frequency bands”, Broadband

Networks, 2005 2nd International Conference,

Oct. 2005

[3] Prasun Sinha, Narayanan Venkitaraman,

Raghupathy Sivakumar, and Vaduvur

Bharghavan. “WTCP: A reliable transport

protocol for wireless wide-area networks”.

TIMELY Group Research Report, January

1999.

[4] L. Magalhaes and R. Kravets, “Transport

Level Mechanisms for Bandwidth Aggregation

on Mobile Hosts”, Network Protocols, 2001.

Ninth International Conference, Nov. 2001

