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Abstract 

 We have created a reliable wireless 

communication framework for use in highly 

congested environments, and where high 

throughput is desired.  This is performance is 

achieved through the use of multiple orthogonal 

channels.  Our system has been developed from 

the ground up specifically for the RoboCup 

Rescue competition.   

 We developed a simple Additive Increase 

and Decrease (AID) approach that reduces the 

speed by a constant for dropped packets, and 

increases the speed by a constant for delivered 

packets. We were able to achieve higher 

throughput with this approach than both using a 

fixed optimal speed and a multiplicative decrease 

method that is similar to TCP’s implementation.  

We were also able to make significant 

improvements to the communication system, 

through implementing a sending queue, 

probabilistic selection of optimal links and 

retransmission of dropped packets. 

1 Introduction 

1.1 RoboCup Rescue 

RoboCup Rescue is an annual international 

competition where teleoperated robots are 

deployed in a simulated disaster environment in 

order to locate victims. Challenges to the 

participants include mobility of the robot in the 

rough terrain, building a map to present to 

potential rescue workers, and solving the 

teleoperation problem. In this domain, 

teleoperation means wirelessly streaming enough 

video data back to the human driver to quickly 

locate victims and also localize his/herself in 

cluttered and dimly lit environments. 

This project focused on the wireless 

communication aspect of teleoperation. This 

problem is non-trivial due to the nature of both 

wireless communications, and the RoboCup 

competition. During the actual RoboCup 

competition, several other leagues could 

potentially be taking place at the same time, all co-

located in a rather small area. Almost every league 

utilizes wireless communication, congesting 

almost every frequency in the area.  

Another inherent problem that needs to be 

addressed is the incompatibility of TCP and 

wireless. TCP assumes a packet drop is always the 

result of congestion, whereas in a wireless 

connection this is far from the truth: Random 

packet drops happen frequently without 

congestion due to interference or the inherent 

imperfection of a wireless connection [1].  TCP 

also ensures delivery of packets, which is not 

necessarily what one wants when trying to stream 

the latest possible frame of video data. We 

retransmit when possible and feasible but do not 

guarantee delivery of a data segment. 

1.2 RCom & Multiple Links 

Our hardware solution is to use three 

orthogonal wireless links (via wireless bridges).  

These links are on three different frequencies: 900 

MHz, 3.4 GHz (via a 2.4/3.4 up/down converter), 

and 802.11g (2.4 GHz). We feel that these three 

frequencies will provide us with redundancy and 

reliability in our communication link. Each 

computer has three IP’s, creating a total of 6 IP’s 

on the network (excluding IP’s of the wireless 

bridges). Therefore proper routing among the 

separate links is taken care of by the IP layer and 

the hardware. One small hardware issue we found 

when dealing with multiple links is that we could 

not use the bridges in parallel on a network switch. 

The bridges are designed to replicate traffic on 

either side of the wireless connection to provide 

the illusion of a single LAN. On the ARP layer, 

bridges pick up packets that are not meant for 

them. This happens back and forth, creating an 

avalanche effect. We solved this issue by 



installing multi-port Ethernet cards on both ends 

of our link.  Each wireless link corresponds to a 

different Ethernet interface on the control station 

side and the robot side. 

Our software solution is a user-level 

transport layer called, “RCom”, short for “Reliable 

Communication”. It sits on top of UDP/IP.  

The API RCom provides the user is very 

simple.  There is one function to send data over 

the link, and a callback function that gets called 

when data is sent to you.  All knowledge of the 

multiple links is transparent to the user.  The user 

need only specify a specific ID number that 

identifies itself, and an ID number to which to 

send data on the other end. 

RCom is symmetric and must be run on 

both ends of the link.  When an RCom API is 

initialized, it can be initialized as inter-thread or 

client. In the inter-thread model, RCom is 

automatically initialized. In the client model, 

another process is the RCom server and the 

server/client pair talk through a local socket. The 

API in both cases are identical. Both sides of 

RCom keep separate estimations of link statistics 

so that data can be best routed. 

2. Implementation 

As previously stated, there are multiple 

links in RCom.  The health of these links must be 

constantly monitored for effective routing.  The 

period of monitoring in RCom is five seconds.  If 

no data is received on the link during this period, 

the link is labeled as ‘down’.  To ensure that links 

do not go down when there is no user activity on 

the link, heartbeat messages are used.  RCom has 

a heartbeat thread that sends 5 heartbeat requests 

over one second, then sleeps for another 4 

seconds, making a cycle of 5 seconds.  When 

RCom detects a ‘downed’ link, no data is sent 

over it until it comes back up as determined by the 

reception of heartbeat messages.   

RCom does not ‘stripe’ a user’s data over 

the different links.  Combining this with the fact 

that each link has only one path, the system can 

conclude that for a given data segment, when an 

out of order packet is received, there must have 

been packet loss. This greatly simplifies the 

reception of data.   

In order to select which link to send data 

on, the RCom layer calculates moving averages of 

attempted throughput and confirmed throughput.  

Attempted throughput is simply how much data 

has been sent on a link, while confirmed 

throughput is how much data has been ACK’ed by 

the receiver.  RCom selects the link with the 

highest ratio of confirmed to attempted 

throughput.  This dynamically achieves load 

balancing.  If a link gets congested (by other 

wireless devices) or is overused, its delivery ratio 

will drop, causing RCom to favor it less than the 

other links. 

When sending data segments that are 

larger than the maximum transmission unit 

(MTU), RCom handles data fragmentation itself, 

and does not rely on IP fragmentation.  Our 

experimentation showed that this type of 

fragmentation allows no temporal spacing of the 

individual packets, reducing the probability of 

delivering an entire segment almost to zero.  

When a link sends packets too fast, it essentially 

clogs itself, creating a need for customized 

congestion control.   

2. Customized Wireless Congestion 
Control 

One of the main goals of this project was 

to test different congestion control algorithms.  

We implemented and tested three such algorithms: 

Fixed Speed, Additive Increase and Decrease 

(AID), and Additive Increase / Multiplicative 

Decrease (AIMD).  We controlled the speed of a 

connection by introducing a small latency between 

individual UDP packets.  The duration of this 

latency inversely determines the (attempted) speed 

of the link.   

2.1 Fixed Speed 

A simple way to set the inter-packet time is 

to use the theoretical transmission limit for each 

link.  The theoretical limits for our three links 

were calculated based on a packet size of 1500 

bytes, and are summarized in Table 1.  The 

number of image frames per second that we can 

achieve is also calculated, based on a 32869 byte, 

640 x 480 jpeg compressed image (at 25% 

compression).   



 

Link Freq. Mbps ms/packet FPS 

1 3.4 GHz 11 1.6 42 

2 2.4 GHz 54 0.216 205 

3 900 MHz 1.5 7.79 5.7 
Table 1 – Theoretical Optimal Speeds. 

2.2 AID (Additive Increase and 
Decrease) 

Part of the problem with using TCP on 

wireless is due to its “Additive Increase – 

Multiplicative Decrease” nature. When a 3-DUP is 

detected (inferred as a packet loss), the speed is 

reduced by half, mainly to achieve fairness among 

the users of the network. Since a wireless 

connection has a lot of random packet losses, this 

causes constant minimization of speed; by 

exponentially slowing down, it is almost 

guaranteed to stay away from its full potential. On 

the other hand, the increase of speed is a constant 

amount, not enough to compensate for the random 

wireless packet losses. 

Our approach is to simply use additive 

instead of multiplicative decrease. In our 

application, fair share of bandwidth is irrelevant. 

2.3 AIMD (Additive Increase / 
Multiplicative Decrease) 

This has the exact same implementation as 

AID, but instead of decreasing the speed by a 

constant (add a constant to the inter-packet time), 

we divide it by a constant (multiply the inter-

packet time by a constant). This implementation is 

intended to mimic TCP. 

3. Other Algorithmic Improvements 

The code base for RoboCup rescue team 

had not been modified since May 2006. RCom 

code was wide open to improvements and 

algorithmic tweaks. 

3.1 Send Queue 

A mistake overseen by the initial 

programmers was the lack of true parallelism 

between the links. An RCom send was blocking 

which meant applications that sent data had to 

wait during the inter-packet sleep. With multiple 

applications using RCom this is not a problem. 

But with a single application, the system was 

unable to transmit data on multiple links 

concurrently. It selected different links for 

different segments, only creating the illusion of 

concurrency. 

We addressed this problem by creating a 

sending queue for each link. Each queue has a 

dedicated consumer thread that takes packets from 

the queue, sends it, and sleeps the inter-packet 

time. Applications simply place a packet on the 

queue and do not have to wait for the sleep. They 

only block if the queue is full. If an application is 

slowing down because of full queues, we do not 

think this is a problem because the network 

capacity is simply the bottleneck and speeding up 

the application further would not make a 

difference.   

3.2 Probabilistic Selection of Links 

RCom commits to a link for a given data 

segment and sends all fragmented packets on the 

same link. It selects the link with the highest ratio 

of confirmed to attempted throughput. The 

problem is that a link that is doing slightly better 

than the others will constantly get picked, 

preventing balancing the network load properly. In 

the worst case, it can cause bursty performance, 

where one link suddenly gets a lot of data to send, 

fails at delivering all the attempts. Then the 

system would switch to another link, repeating the 

same problem. 

We fixed this potential problem by using a 

probabilistic approach. Each link is 

probabilistically selected based on its ratio. For 

example, if one link has a ratio of 0.4 and the 

other two links have 0.3, the first one will get 

picked 40% of the time and the others 30% of the 

time. This should result in a more balanced usage 

of the network. 

3.3 Retransmission of Dropped 
Packets 

RCom never retransmitted dropped packets 

in order to complete a data segment. Upon 

receiving a notification of a missing fragment, it 

simply discarded the rest of that data segment and 

started transmitting the next one. For drops that 

happen close to the end of a data segment, this is a 

serious waste of effort. We implemented 



retransmission of such dropped packets whenever 

the sender has not yet moved on to the next data 

segment (at the time it receives the notification). 

3.4 Other Improvements 

There were bugs regarding throughput 

calculation which we detected while collecting 

data. We also corrected threading-related bugs, 

such as incorrect use of mutexes. 

4. Experimental Results 

4.1 Test Environment 

On the sending side (the robot), we have a 

P4 Mobile 2.0GHz running on a mini-itx 

motherboard with 1.0 GB RAM. A 4-GB compact 

flash card is used as a hard-drive with a IDE-CF 

adapter. The receiving side (operator control 

station) has a Pentium 4 – 2 GHz CPU, 1GB RAM 

and a 14GB SCSI hard drive. Both computers 

have a 4-port PCI Ethernet card.   

4.2 Experiment Method 

We tested RCom in a similar manner to its 

intended use in RoboCup, where there is mostly 

one way traffic of image frames.  We wrote a 

simple program that uses the RCom library to 

continuously send a 32869-byte jpeg at 50 Hz.  

We run the system until the receiver successfully 

receives 1000 images.  For the fixed speed 

method, we used the inter-packet times calculated 

in Table 1. 

We tested the performance of AID, AIMD, 

and the fixed theoretical approach. We also ran a 

fourth case: where we looked at the plots of the 

AID run, and selected inter-packet times that 

produced the best throughput.  We tried the fixed 

approach with these inter-packet times. We call 

this method, “Fixed – Observed Optimal”. 

4.3 Results 

The FPS measurements for the four 

different approaches are summarized in Table 2. 

AID did considerably better than any of the other 

approaches. It was able to achieve 10 FPS over a 

span of 1000 frames. Changing the optimal time 

did not make much of a difference; in both cases 

the FPS was a little more than 3 FPS. 

 

Method FPS 

Fixed - Theoretical Optimal 3.3 

AID 10.1 

AIMD 0.2 

Fixed - Observed Optimal 3.2 
Table 2 – Throughput performance of different 

approaches. 

4.3.1 Fixed-Theoretical Optimal 

 We considered this the baseline test.  Here 

is a plot of the ACK’ed throughput on the robot 

side.  The total throughput indicates that we could 

have achieved a much higher frame rate. 

 
Figure 1 - Fixed-Theoretical Optimal Throughput 

4.3.2 AID 

 Here are plots of the inter-packet times and 

ACK’ed throughput for our AID test.  It illustrates 

how the adaptive packet spacing changes the 

throughput. 

 
Figure 2 – AID Inter-Packet Times 

 



 
Figure 3 – AID Throughput 

 

 
Figure 4 – AID Confirmed to Attempted Ratio 

 

One thing to note from these plots is the 

drop in throughput near the end of the test.  We 

think this is due to the under-utilized Link 1 

suddenly having some ACK’ed packets.  This 

caused the confirmed to attempted packet ratio to 

jump sharply.  This, in turn, caused RCom to favor 

this link over the superior Link 2.  We will 

continue to investigate this phenomenon.  One 

simple fix would be to smooth the ratio, or put a 

cap on how small the number of confirmed 

packets can get so we don’t get huge ‘divide by 0’ 

ratios. 

4.3.3 AIMD 

AIMD performed poorly as expected. 

Reducing the speed by half (as it is done in TCP) 

slowed down the sender so quickly that the 

process was hanging for long periods due to long 

sleeps and the receiver simply stopped receiving 

data. We then tried reducing the speed to 83% 

instead of 50% (multiplying inter-packet time by 

1.2). Even then, performance was very poor 

compared to the other approaches.  We suspect 

that the multiplicative decrease made the inter-

packet times so large that hardly any data was 

getting through.  The inter-packet times this 

implementation settled on were about 2 orders of 

magnitude larger than our other implementations. 

4.3.4 Fixed-Observed Optimal 

 Because of the high performance of AID, 

and poor performance of the theoretical optimum 

static case, we sought to determine if our 

calculated inter-packet times were just wrong.  We 

looked at the plot of AID’s total throughput and 

found when it had peak performance.   

 
Figure 5 – AID Total Throughput 

 

 We then determined the observed optimal 

inter-packet times (from Figure 2) to be:  

 

Link Freq. ms/packet 

1 3.4 GHz 2.3 

2 2.4 GHz 0.15 

3 900 MHz 4.01 

Table 3 – Observed Optimal Inter-Packet Times 

 

 To our amazement, this test actually 

performed slightly worse than the calculated 

theoretical case, achieving only 3.2 FPS.  It seems 

that an adaptive congestion control strategy is 

essential to high throughput over wireless. 

4.3.5 Other Observations 

 It should be noted that more efficient 

congestion control algorithms will transmit less 



data, faster.  This can be seen in Figure 6.  Here 

the sum of received packets is plotted for both 

AID and the calculated optimum.  We see that 

AID received the 1000 frames in less time, and 

with fewer packets. 

 
Figure 6 – Received Packets, AID vs. Calculated 

Optimal 

 

 AID is quick to notice downed links, and  

adjust itself.  In this test we only had 2 working 

links, and part way through the test we 

intentionally downed a link by removing the 

Ethernet cable from the wireless bridge.  You can 

see that the attempted throughput drops very 

quickly, and the overall throughput only takes a 

small decline.   

 
Figure 7 – Link Drop Test – Attempted 

Throughput, Robot Side 

 

 
Figure 8 – Link Drop Test – Total Throughput, 

Robot Side 

 

For certain links, the round trip time on the 

receiver was much higher than the sender. This is 

due to queue contention on the sender between 

ACKs and data segments. The receiver has no data 

waiting on the queue, so ACKs are sent almost 

immediately after they arrive.  However, on the 

sender, the ACK’s may have to wait on a full 

queue, only to get placed on the tail of the queue.  

This is best illustrated by Link 3 during the 

calculated optimum test as seen in Figure 9.  The 

other links in this test did not have this problem 

because their queues were not as full. 

 
Figure 9 – Link 3 RTT, Calculated Optimal Test 

 

Slightly related to the situation above, 

another interesting observation is the relationship 

between inter-packet times on the sending end, 

and RTT times for the corresponding link on the 

receiving end.  Link 3 has the highest inter-packet 

time on the sender, and it also has the highest RTT 



times on the receiver.  The amount of wait in the 

queue is a linear function of the inter-packet time. 

5. Conclusion 

Our AID approach performed better than 

the baseline of using a fixed speed, no matter how 

optimal that speed is, showing that it is essential to 

adapt to the status of the wireless even in 

arrangements where there is no explicit share of 

the bandwidth. Furthermore, we believe we 

demonstrated that using an additive instead of 

multiplicative decrease in speed was more 

appropriate for our wireless setup. 

We have also made substantial 

improvements to the quality of the code as we 

described in Section 3. After our implementation 

efforts, during the experiments, we never observed 

the CPU utilization of the process to be more than 

0.7%.  

Making improvements to this 

communication work was a non-trivial task. The 

main implementation class has around 1200 lines 

of code. With additional files, the RCom package 

has around 3200 lines of code. 

The 3.5 GHz link did not have an antenna, 

which probably contributed to its poor 

performance. 

 

6. Future Work 

Some possible methods to test include: 

 

• Signaling the user application when there 

is a full queue, so it can potentially slow 

down the sending. 

• Striping data across links. 

• Using the slowest link for bundled ACK 

messages as suggested in [2]. 

• Sending redundant identical data on all 

links (based on the slowest link) to 

eliminate packet loss. 

• Migrating the queue of a link that went 

down. What has already been placed on a 

queue when a link is declared down is still 

sent on that link. A solution is to move this 

data on to another queue. 

• Eliminating out-of-order data reception. 

Because the wireless bridges are different 

speeds, the receiving side can get data out 

of order.  This can be fixed by using a 

sequencing system across all the links, in 

addition to within a single link. 

• Implementing intelligent ways of 

distinguishing between random packet 

losses and congestion related losses as 

done in WTCP [3] and in [4]. 
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