
revolution is coming, and it
is time to choose sides.
Microsoft + .NET or Linux +

Python. Microsoft Robotics Developer
Studio (MRDS) and Robot Operating
System (ROS) are the major contenders
for service-based robotics libraries. The
lines have been drawry and whichever
side you choose, you should be pre-
pared for a new paradigm: distributed
computing.

MRDS and ROS are two new robotics
software architectures that have sprung
up in the past few years. At first glance,
they could not be more different. ROS is
strongly rooted in the open-source

movement (ROS also stands for Robot
Open Source), and only runs on Unix-
based platforms. MRDS is, we1l,
MicrosofÇ and as you would expect only
runs on Windows. However, once you
get past these differences they are actu-
ally quite similar, They are both "Service
Oriented Architectures," or SOAs for
short. This architecture looks to be the
next big trend in robotics.

Why are SOAs the next big thing? For
a number of reasons. As CPU speeds are

starting to level off, computer engineers
are finding that the best way to give
computers more horsepower is to up the
number of cores. This means more

threads at

run m Pal
this powet

this direct
The other
More and

computer
Internet a

different
designed I

PARALI
Interestin¡

robotics. f
massively

data at thr

"machine.
our ment¿

lelism as l
ly as usefr

The ot
applies t<

said that
of connec

tion, a rt
many lay,

the iowes

sensor an

own mic
highest k
maPPing
ancin& lir
cessing, i

can all tal

to wartar
To come

gy, it is
brain ha
these difl
mention
nervous
lower-1el

even soII
Again, if
built wit
working
our robol

THE NEXT BIG THING!
i Sen/ice Oniented
Anchitectunes

Two leading
systetns,

MRDS and
ROS, point to
the future of

44 ROBOT MAGAZINE

robotics
PHOTOS COURTESY OF WILLOW GARAGE, ROD GFUPEN AND COBOWARE



lr Robot
)n Unix-
ì, well,
rect only
)nce you
are actu-

"Service

OAs for
:o be the

ring? For

leeds are

)nglneers

' to give
to up the

15 mOre

D COROWARE

threads available which in turn means more code can

run in parallel... but only if you know how to harness

this power. (Even simple microcontrollers are moving in

this direction. Take for example the Parallax Propeller).

The other reason is due to the ubiquity of the Internet.

More and more, what used to be handled on a single

computer or mainframe, is now handled through the

Internet across multìple machines' This means lots of

different systems talking to each other. SOAs are

designed for this purpose.

PANATLELISM AND THE BIOLOGICAL MODET

Interestingly, the same factors that spawned SOAs also apply to

robotics. Lels first take a look at parallelism. The human brain is

massively parallel. The brain's billions of neurons all process

data at the same time, giving rise to the planels most powerful

"machine." If we ever want our robots to have even a fraction of

our mental capabilities, we will need to take advantage of paral-

lelism as well. It turns out that a single fast computer is not near-

ly as useful as mant slower computers working in parallel.

The other factor, inter-machine communication, definitely

applies to robotics. It has been

said that robotics is the science

of connectors. Almost by defini-

tion, a robot is going to have

many layers of computation. On

the lowest level, just about every

sensor and actuator now has its

own microcontroller. On the
highest level, vision processing
mapping and navigation, bal-
ancing limb control, speech Pro-
cessing, and behavior selection

can all take up enough resources

to warrant dedicated Processors'
To come back to the brain analo-

gy, it is well known that the
brain has separate regions for
these different functions. Not to
mention our spinal cord and

nervous system which handle
iower-level reactive control and

even some simple walking tasks.

Again, if biological systems are

built with modular controllers
working in parallel, shouldn't
our robots?

UEIctT.E¡ AEiE¡IE¡TIVE
FIclE!clT
The uBot-5 is the latest generation of an assist¡ve

robot that has been in development for some years at

the University of Massachusetts Amherst. Computer

scientist Rod Grupen, director of UMass Amherst's

Laboratory for Perceptual Robotics, www-
robotics cs.umass.edu/Bobots, has led the project.

Current research by Hee-Tae Jung includes telemedi-

cine for use in stroke rehab and therapy for aut¡sm. Scott R. Kuindersma is

us¡ng the uBot-s to research "whole body" modeling and control.

The uBot-5 is an assistive robot for aging citizens. lt is designed to help

with a variety of m¡nor households tasks and admin¡ster medical instru-

mentation. lt also allows the client to easily communicate with service

providers and loved ones. lt can reach objects and pick them up in the

same manner as a human, and can retrieve items from conflned spaces.

The robot's services run on an on-board Pentium-based PC running

Windows XP. The uBot-s teleoperator controls have been ported over to

Microsoft Robot¡cs Studio. The uBot-6 will be ¡ntroduced this summer.

¿i l'l
'.; f; l{, t.lt t.1

t"

SEÞTEMBEH/OCTOBER 2O1O 45



TH E N EXT B I G TH I N G-S E FìVI C E O tr I E NTE D AFì C H I-I-ECTU Fì ES

i

I

MICROSOFT FOBOTICS DEVELOPER STUDIO

The first contender, MRDS, first released in December 2006, is a

product of Microsoft Research. It is closed-source, but completely

free as of version 2008 R3. MRDS is built on top of Microsofls .NET

Framework. T?ris means that you have a wide choice of program-

ming languages, although MRDS only suPPorts C#, VB.Net,

C++/CLI, and IronPython. It also means ttrat you have the backing

of a huge and powerful library with lots of helpful subroutines.

MRDS consists of two core libraries: Concurrency and

Coordination Runtime (CCR), and Decentralized System Services

(DSS). CCR is a lightweight messaging library which lets you

spawn, iterate, and join threads quite easily' DSS is a state-oriented

service model that leverages CCR and gives you higherJevel func-

tionality like web browser integration. All MRDS services can be

inspected and configured through a web browser, which reduces a

1ot of operations to a simple point-and-click. However, users will
still need to be familiar with DOS command line tools, as not every-

thing can be done through the browser'

In addition to CCR and DSS, MRDS includes a Visual
Programming Language (VPL) and a wrapPer for the NVidia
PhysX 3D physics simulator' White VPL is targeted to non-Pro-

grammers, CCR and DSS are robust enough for enterprise level

work. MRDS has a multitude of corporate parhrerships. One appli-

cation of note is baiancing the load on the MySpace servers.

ROBOT OÞERAÎING SYSTEM

hr the second comer, we have ROS which is the primary software

platform of Willow Garage. It celebrated its 1.0 release in January
2010, and first stable distribution "Box Turtle" in March. ROS is

completely open source, and was jointly developed by Willow and

Stanford University. ROS calls itself a "meta-operating system for

cclFlcrwAFlt
FIclEICITS
Coroware Corobots have been using

Microsoft Robotics Developers Studio

for years. Corobots are used for
research at a variety of colleges and uni-

versities, including Vassar College, and

come in a variety of configurations suìt-

ed to both indoor and rough outdoor
environments. Check out Coroware's

website to see more,

www.corowafe.com.

your robot" because it gives you standard O9like tools for working

with ROS on your robot. ROS is only supported on Unix-like oper-

ating systems: Linux, O9X and Cygwin on Windows. ROS is writ-
ten in both Python and C++ whidr provides a nice mix of power and

portability. Additionally, message types and other configuration

files are specified in simple plain-text files which get parsed into

code by the client you use. Currently, C++ and Python clients are

supported, with additional Octave, Lisp, and Java clients having

experimental status.

Being partiatly developed at Stanford, it is easy to understand

that ROS has many ties to the robotics academic world. Currentþ,

22 universities maintain ROS software stacks' Additionally, the ROS

development team significantly overlaps with the development

teams for OpenCV and Player. This ensures that ROS has seamless

integration with these colrunon academic robotics libraries. It also

means that ROS developers can leverage lots of preexisting robust

code. While ROS has a wide variety of packages, a majority were

created for mobile manipulation research. Mobile manipulation is

one of the topics at the forefront of robotics acadernic research. This

is what Willow Garage's PR2 robot was designed for.

Similar to MRD$ ROS has a variety of command line tools to

create new packages and get info on them. However, ROS takes this

to a new level. Its multitude of tools provides a solid infrastructure

to manage your system and keep third party packages working

nicely with each other. ROS's maìn interface is the terminal. Lintx

users w
in place

port the

one tool

It shou
librarit
nomen(

clature.
For exa

service

cle, I ut
Howev
here, y<

Oncr

ing cod

other f¡
you ar(

tecturer

genera

pretty r

step to

First, a

46 ROBOT MAGAZIIUE



working
ike oper-

S is writ-
rwer and

guration
rsed into
lients are

s having

derstand

lurrently,

the ROS
,lopment

seamless

;. It also

rg robust

:ity were
rlation is
rch. This

r tools to
:akes this
shncture

working
al. Linux

l,VILLclW G¡AFIAG¡E
PFIz
Willow Garage's PR2 robot uses ROS run-

ning in a Linux operating system. lt is a pur-

pose designed research platform that ¡s

being given away to approximately 10

research centers at no cost lo spur robotics
reseafch. Films of the PR2 autonomously
folding towels can be found at the W¡llow
Garage website, www.willowgarage.com.
PR2 is intended to do usefulwork of all

kinds in human environments, and its
designers hope that developers will take it
far as a groundbreaking platform.

users will feel at home using "roscd" in place of "cd", and "rosls"

in place of "1s", just to name a few. Additionally, these tools sup-

port the "pipe operator," which allows you to funnel the output of

one tool into another to create powerful command sequences'

IERMINOIOGY DIFFERENCES

It should be noted that the terminology between these two
libraries differs significantly. MRDS uses a web-services
nomenclature, whereas ROS uses a distributed systems nomen-

clature. At times, the naming conflicts can be quite confusing.

For example, a node in ROS is called service in MRDS, and a

service in ROS is just a pair of messages in MRDS. In this arti-

cle, I use terminology that is more closely aligned with MRDS.

However, if you understand the high{evel concePts outlined
here, you should have an easier time learning either system'

Once you have chosen your poison, you will find that writ-
ing code for either of these packages is a little bit different from

other types of programming you may have done - especially if
you are not familiar with distributed systems or service archi-

tectures. Despite differences in naming, implementation, and

general coding philosophies, both MRDS and ROS follow a

pretty similar design pattern. Understanding SOAs is a big first

step to learning and working with these libraries.

SERVICE ORIENTED AFCHITECTURE

First, a little history. SOAs are not new. Web services have been

around for about a decade now. Typically, when one talks
about SOAs, they specifically mean web services which are a

collection of standards and technologies such as XML, SOAP,

and WSDL. Here, I use the term SOA to mean the general archi-

tecture of your code. In a SOA, each part of your application

runs in an isolated service, and they talk to each other through

messages. There are two basic messaging schemes:

request/reply, and publish/subscribe.
Request/reply can be thought of as a "pull" scheme, where a

service always has to pull requested data out of another service.

This is the most basic type of messaging. In general the

"request" message need not actually be a request for data; of

course it can send data or simply be an indication to another

service. The bottom line with request/reply messages is that if
you want data repeatedly, you have to ask for it each time.

The other type of messaging, publish/subscribe, can be

thought of as a "push" scheme. In this pattern, one service

spews messages continuously, without knowing or caring if
any other service is listening' It is "pushing" the data. Then, one

or many other services can subscribe to this data stream. This

pattern is analogous to a "callback" or "interrupt" because the

service that is subscribed to the data stream will get notified as

soon as there is a message. This pattern is particularly useful for

low-level sensoïs that generate new readings at a constant rate,

and you may have many services that want to subscribe to and

inspect this data.

SEPTEMBEn/ocroEER 2o1o 47



THE NEXT BIG THING-SEFìVICE OFIENTED AFCHTTECTUF|ES

INFORMATION FLOW
Here is an example of a highly simplified SOA for a generic mobile
robot with an arm. At the bottom of the diagram, the gray rectan-

gles represent the actual hardware of the robot. The blue ellipses

above represent services. The arrows represent the flow of data
through the system. As you can see, it is arranged somewhat hier-
archically, with "low-level" services closer to the hardware, and

"high-level" services separated from the hardware. The higher up

l-,I

the service, the "brainier"
it is. Constructing your
system in a hierarchical
manner like this forces
you to maintain good
design patterns. It also
helps with debugging
because you will have a

clear understanding of the

Í""rÏ,".:l """"s b e tween

The downward point-
ing arrows are typically
request/reply type mes-
sages. This is because the
higher level services are
directly controlling the
lower ones. The data in

SOA for a generic mobile robot with an arm.

each of these messages is usually some sort of control command.
For example, the artificial intelligence (AI) service tells the inverse
kinematics (IK) service where to move the atm, or the navigation
service where to drive the robot. Following the path of the down-
ward arrows will lead you to the robot's hardware outputs, the
motors.

Similarly, following the upward arrows will take you from the
robot's hardware sensors, the laser range finder (LRF), bumpers,
encoders, and camer4 up to the brains of the robot. These are
mostly publish/subscribe type messages, because the sensors gen-
erate data as fast as they can and simply broadcast this i¡forma-
tion. You can see how both the navigation and drive-control ser-
vices subscribe to the wheel encoder data. Both MRDS and ROS
are designed to handle this type of broadcast efficientþ.

As alluded to above, a service may not necessarily know or care
about the other services running, or even interacting with it. This
loose coupling is possible due to the message passing interface.
When services talk to each other they only see this interface. If you
set up your message definitions properly, you can tum each inte¡-
service interface into an abstraction layer. This is where the real
power of SOAs comes into play. These abstraction layers allow for
easier code re-use and exchange. In our simple example from
above, the LRF service implements a standard generic set of mes-
sages which provide laser scan data. So if you change your hard-
ware to use a SICK LRF instead of a Hokuyo LRF for example, you
would only need to change the LRF service. The navigation service
would not even know there was a change in your system. The new
SICK LRF service you use might not even be written by you. All
this can be done without changing a single lìne of source code.

This service isolation provides robustness to your system. If one
service goes dowry all other services will not necessary go down
with it. Of course data may back up and things can still break; but
at least there is an opportunity to recognize the fault and restart
the service if possible. This isolation also means that you can scale
your system quite easily. For examplg if you find that the vision
service is taking up too much processing power and dragging the

48 ROBOT MAGAZINE

entire system down, you can simply put that one service on a sep-
arate computer. Because services talk over sockets, they don't care
if they are on the same computer, or across the globe over the
Internet. Lr generaf moving a service onto another computer, does
not require any code changes. It usually only requires modifica-
tion of some configuration and start-up files so that all services
know how to find each other.

CODE COMPLEXITY
Of course there is a cost to
pay for the flexibility and
power of a service archi-
tecture, and that is com-
plexity. Your code is no
longer a single string of
instructions. Gone are the
days of simply setting a

breakpoint and stepping
through your code. Now,
your code is spread over
multiple applications and
multiple threads, each
sending and receiving
asynchronous messages.
Needless to say following
the flow of execution of

your code can be tough. On top of the normal coding bugs, there
are a host of new and much more onerous issues such as dead-
locks, starvatiory port/firewall issues, message type mismatches,
and improperly implemented services. Both MRDS and ROS have
tools for logging debug messages and examining message histo-
ries, but in large systemt even these tools can break down.

coNctustoN
Make no mistake; both the MRDS and ROS libraries have very
steep learning curves. But I believe climbing that mountain is well
worth it. Fol users wishing to learr¡ my suggestion is to read all
the documentation you can get your hands on and do the tutorials.
They are there for a reason. Thankfully, both libraries have large
active communities that you can take full advantage of. MRDS has

extensive forums, and ROS has an email list with lightning-fast
response times.

SOAs are an important and powerful paradigm for robotics
today. If you want to be a part of the modern robotics community,
a solid understanding of SOAs and distributed systems is becom-
ing a requirement. The popularity of two new libraries: MRDS and
ROS is an example of this. So, which side are you on?

Editors note: Ben Axelrod is a Research Scientist for iRobot Corporøtion,

He currently liaes in Burlington, Møssachusetts with his wífe and son.

He has preaiously worked for Corousøre, Inc., Microsoft and Iguønø
Robotics, Inc. At Miuosoft he helped launch the frst preoiew releøse of
MRDS, @

Links
CoroWare Inc., www.coroware.com, (800) 641-CORO

Laboratory for Perceptual Robotics, www-robotics.cs.umass.edu/Robots,
(473) s77-0618

Microsoft Robotics Developer Studio (MRDS),
www.rnicrosoft.com/robotics

Robot Operating System (ROS), www.Ìos.org
Willow Gatage, www.willowgarage.com, (650) 475-2700

For more informatiory please see our source guide on page 89.


