
Heuristically initialized motion planning in a low cost consumer robot

Nandan Banerjee, Erik Amaral, Ben Axelrod, Steven Shamlian, Mark Moseley

Abstract— In this paper we address the problem of designing
a consumer robot capable of manipulating objects typically
present in a home. One reason for lack of consumer adoption of
manipulator robots is that planning for grasps while negotiating
obstacles is costly in terms of time, power, and computational re-
sources. Also, robot arms are generally expensive, thus confining
their usage to research labs and the industry. The contribution
of this paper is twofold. First we present the hardware design of
robot arms resulting in an order of magnitude reduction in cost
over the state of the art. Second, we propose an efficient motion
planning algorithm which is able to generate motion plans
for grasping consistently within 1s everytime using heuristic
initialization. We evaluate the algorithm on a challenging task
of grasping objects in a cluttered home environment, using a
proprietary physical system using two low-cost 7 DoF arms, 3
fingered underactuated hands, and a 1 DoF torso and neck on
a holonomic drive base.

I. INTRODUCTION

Manipulation for consumer applications still has a long

way to go. There are certain challenges that need to be

addressed first before robot arms can safely make their way

into consumer homes. Typically, robot arms are large and

dangerous to be around. While this problem is partially a

result of their industrial pedigree, it is also a simple matter

of physics. To have a required lift capacity at the end-effector

of the arm, electric motors need to have a high gear ratio.

This makes the arm very stiff with a high amount of inertia.

Recently, some arms such as the Rethink Sawyer, Uni-

versal Robotic, and Kinova have been developed to use

expensive precision harmonic drive transmissions [1][2][3].

These arms can work closely with people, but are far outside

the price range of traditional consumer products. Other arms

use series elastic actuators to add compliance to make them

safer while still using traditional gearing like Rethink Baxter.

We recognize that there are engineering trade-offs that we

must exploit in order to achieve a low-cost home manipula-

tion robot. With no analog available for Moore’s Law in the

hardware world, we have worked to move solutions from the

hardware domain into software in order to take advantage of

dropping processor costs.

In Section III, we briefly describe the design and con-

struction of low cost arms and torso with an order of

magnitude price improvement over state of the art which is a

significant starting step towards building manipulation robots

for households. Since having legged robots in the home poses

significant control and cost challenges, we have chosen to go

with a proprietary mobile holonomic base (not low cost) to

support the upper body of the robot. Our objective was to

The authors are with the iRobot Corporation, Bedford, MA, USA
{nbanerjee, eamaral, baxelrod, sshamlian, mmoseley}@irobot.com

Fig. 1: Arms with torso.

create a strong and capable upper body (arms and torso)

comparable to manipulators that are available in the market

- but much less expensive. We have not addressed the design

of a low cost home navigation platform in this paper.

Apart from having a low cost humanoid like platform,

fast motion planning is also essential if consumers are to

feel comfortable around robots and be able to effectively

use them to do household chores. The generated motion

plans should also be intuitive to a consumer, i.e. they should

“look natural”. In Section IV, we introduce a motion planning

framework using a grasp heuristic initialized optimization

based planner for generating fast and natural-looking plans.

In Section V, we compare the heuristic initialized op-

timization based planner with BiRRT and show that our

method finds solutions in about 1s or less whereas BiRRT

solve times range from 0.2s to 4.6s depending on the initial

configuration of the robot. We present our Conclusions in

Section VI.

II. RELATED WORK

Robotic arms that are inexpensive and also robust enough

for consumer applications are not very common in the liter-

ature. On one hand, there are hobbyist robotic arms which

while generally inexpensive lack in precision, safety, speed,

or lift capacity. On the other hand, there are commercial

arms manufactured by Rethink, Kinova, Franka Emika, and

others, which have all of the specifications but are an order

of magnitude more expensive [4][5][6].

The state of the art grasp planning work has been mostly

based on the idea of trying to find ideal grasp solutions by

simulating grasps on object shapes. Miller et al [7] produced

very promising results by using shape primitives to do grasp

planning. Research on using a Bayesian framework for plan-

ning for grasps taking robot kinematics and object shape and

pose uncertainty into account was done at Willow Garage [8].

These methods usually require previous knowledge about the

object to be grasped and also take some time in simulating

valid grasps.

There has been a lot of work done in the area of motion

planning for articulated robots, human robot interaction, and

active obstacle avoidance. In motion planning, two different

approaches are usually taken - a sampling based approach,

and an optimization based approach. The first approach of

using sampling based planners like RRT and BiRRT [9]

yields a feasible path in the search space. These methods

are probabilistically complete. However, searching in high

DoF configuration spaces with a mesh representation of the

robot environment, and finally performing post processing

on the generated trajectories is computationally intensive

and time consuming. Bialkowski et al [10] proposed a

method to reduce the number of collision checks in sampling

based algorithms but those only work well with multi query

methods like RRT* and not RRT. King et al [11] worked

on the rearrangement planning problem on a planar surface

by incorporating a physics model in the planner to generate

trajectories with full arm manipulation and object interaction.

On the other hand, optimization based planners like

CHOMP [12], STOMP [13], and TrajOpt [14] can generate

collision free trajectories from an initial trajectory which

might be in collision. The result of a trajectory optimization

problem can be obtained in a short amount of time and

scales well with accurate mesh representations of the robot

environment. But these methods also have their drawbacks,

the most important being sensitivity to the choice of the

initial trajectory guess and getting stuck in local minima.

To tackle some of these problems of optimization based

planners, Li et al [15] came up with a method for generating

initial trajectories to improve the success rate of finding a

solution. They used BiRRT to produce an initial trajectory

and then used that as a seed to an optimization based planner.

Although it gave better success rates, it took a long time to

find that particular solution.

III. HARDWARE

The robot is intended to be used for everyday tasks around

the home. Since the average home is designed around human

function, it was logical to design a manipulator that closely

matched human morphology [16][17]. The capacity of the

arm was determined by measuring human joint speeds and

lifting capacity. The layout of the arm is: Roll− Pitch−

Roll−Pitch−Roll−Pitch−Yaw. In the interest of removing

cost and complexity, the hand was designed with three

underactuated fingers (see Fig. 2 and Fig. 3 b).

In order to make the manipulator feasible for consumer

use, cost was taken into serious consideration. Injection

Fig. 2: Joint layout of the manipulator.

Fig. 3: (a) Bend in the torso leading to an increased workspace and more
natural looking to users. (b) Rendition of the arm with the joint axes.

molded parts and repeated parts were used whenever pos-

sible. The same actuator was used for the top five joints,

with the first two joints having a larger motor to handle

the increased torque. The actuator consisted of a three stage

planetary gearbox with a brushless DC (BLDC) motor. The

lower two joints consisted of two custom linear actuators

forming the wrist gimbal driven by the same BLDC motors.

Each actuator was almost entirely made of injection molded

parts bringing the price down to less than $80 per degree of

freedom. A detailed cost breakdown can be seen in Table I

(1000 unit per year volumes).
TABLE I: Cost breakdown of the arm

Description Cost

Joint
Gearing, housing, motor, misc. hardware (per joint) ∼ $45
Motor driver and other electronics ∼ $35
Total ∼ $80

Arm 7 x Joints (without end effector) ∼ $560

Extensive analysis was performed to pick the joint layout.

We looked at various metrics such as manipulability mea-

sure [18][19] and distance from joint limits for the workspace

in front of the robot as well as simple motions such as

opening doors, cabinets, drawers, and reaching objects. A

Roll−Pitch−Roll type shoulder was found to have the best

trade-off between usable workspace and ease of mechanical

construction. Keeping in mind that the arm’s workspace is

primarily in front of the robot, we were able to safely limit

the joint ranges allowing us to do away with costly slip-rings

or wire service loops.

A robot in the home should be able to reach objects on

the floor. We decided to add this ability with a 1 DoF waist

instead of an extra arm link or linear actuator in the torso. Not

only is this more natural looking to users, but it significantly

increases the arm’s workspace when working at a table (see

Fig. 3a). This bending waist also necessitated a bending neck

since we want to keep our cameras fixed on the target as we

bend the waist and reach forward. To keep the cost down,

we did not include panning joints in the waist or neck since

a mobile base is able to provide this degree of freedom.

We also offset the robot’s hand by 30 degrees. This faces

the robot’s palms inward and allows for more human-like

grasps.

We chose inexpensive brushless outrunner motors; their

mass to torque ratio far exceed more conventional inex-

pensive motor technologies [20]. Three different sizes of

motors were used in the system. Smooth control of this

arm requires a very high dynamic range on speed – between

0.05 and 20 kRPM on the motor shaft. Usually, a controller

with this kind of capability for a mass market sensorless

BLDC motor costs hundreds of dollars. So, we moved away

from the hardware domain by designing our own brushless

driver and communications stack for smooth control of these

brushless outrunner motors at a lower cost. We implemented

torque control (at 40 kHz) and velocity control (at 300 Hz)

using an 8-bit, 32 MHz microprocessor which costs less than

$2. The whole controller costs approximately $35 in low

volumes (1000 units per year). The robot computer is a single

Gigabyte BRIX Pro GB-BXi7G3-760, residing in the robot

torso. An Intel RealSense R200 RGB-D sensor was mounted

on a tilting neck as the primary visual input. The RealSense

R200 was chosen due to its compact size, minimum range,

relative low-cost, and availability compared to many of the

other common RGB-D sensors being used.

The torso is mounted on a proprietary holonomic mobile

platform with indoor navigation capabilities. This mobile

base reads a map of the environment generated apriori and

uses SLAM to navigate to a given target.

This robot provides comparable range of motion to other

robots mentioned in the Introduction but offers a higher

payload capacity at a cheaper price point. The robot can

provide a 3.63 kg lift at full extension of one arm, and a

6.8 kg lift when the robot is curled at the elbow. Joints 1-2

have a max torque capacity of ∼46.32 Nm, joints 3-4 have

a max torque capacity of ∼33.33 Nm and joint 5 max of

∼9.04 Nm at the output. The gearing has integrated slip

clutches to protect the joints from overload. Unloaded joint

speeds are 120 degrees/sec and full load joint speeds are 30

degrees/sec. Range of motion - joint 1 (0◦− 330◦), joint 2

(0◦− 190◦), joint 3 (0◦− 330◦), joint 4 (0◦− 170◦), joint 5

(0◦−330◦), joint 6 and 7 (end-effector moves in a 60◦ cone).

IV. METHOD

First, the robot is moved to a place of interest, i.e. in

front of a table or a counter-top. The proprietary robot

base which is given high level instructions like “Go to the

kitchen table” handles this part. After that, the robot detects

the target object and manipulates it as per the instructions

received by the robot. This section briefly discusses some

of the perception algorithms which are responsible for the

detection and localization of the target object and then the

heuristic initialized optimization based planner is presented.

The perception algorithms are presented for the sake of

completeness of the pipeline. A high level outline of the

perception-manipulation pipeline is as follows:

• Navigate to location of interest (“go to kitchen table”).

• Based on task specification, choose perception pipeline.

• Use 3D stereo to scan and identify objects of interest.

• Generate a ranked set of candidate grasp poses based

on a heuristic.

• Generate IK (inverse kinematics) solutions using IKFast

and pick the best solution.

• Plan using an optimization based planner.

• Execute the plan on the robot.

• Use a low-level servo controller using ranging sensors

on the robot hand for performing a final grasp.

A. Perception

In the course of this work two vision pipelines were

developed, both designed to serve the goal of providing a

real-time point cloud processing framework for manipulation

in cluttered 3D environments. The goal of the first pipeline

(graspable shape pipeline) was to find graspable primitive

shapes. By limiting the representation to primitive shapes

instead of a dense representation such as a mesh, it is possible

to drastically reduce the complexity of both obstacles for

collision avoidance as well as grasp planning. This approach

works well for a wide range of objects geared towards pick-

and-place style tasking. The first pipeline is used for tasks

such as cleaning a table by picking up objects represented

as generic primitive models and placing them in a container.

Fig. 4: Example output of the graspable shape vision pipeline

Overall, this pipeline generated a simple representation of

the world and operated at approximately 7 fps on our Intel

i7 computation platform. It worked well for many objects

and enabled very fast grasp planning and collision avoidance

as shown in Fig. 4. Some disadvantages - Limiting object

representations to only primitive shapes results in poor grasps

for some objects and the shape fitting can be quite noisy with

translucent, specular, and complex self-occluding objects.

Fig. 5: Example of a 3D bounding box of a detected object tracked over
time. The track history is the pink line off the side of the box

The second pipeline (object detection pipeline) leverages

RGB trained objects detections to find graspable objects

based on deformable part histogram of oriented gradients, but

newer detectors could easily be leveraged as the final output

need only be 2D bounding boxes. Furthermore, the entire

point cloud within graspable range is meshed for a richer

representation of both objects and obstacles. The second

pipeline is used for tasks where the robot is asked to pick up

a particular type of object, like a beer bottle from a cluttered

table full of other objects (Fig. 5).

B. Grasp Heuristic

There are various methods for generating valid grasps, but

most of them usually simulate grasping solutions on a model

of the object to be grasped. These methods are usually very

computationally intensive and need an accurate model of the

object. In the case of household manipulation, when one

thinks of tasks like cleaning a table by removing objects from

it, or picking up a bottle of water to hand over to someone,

accurate representations of the object are not necessary and

a crude object model is enough to generate grasp points.

This fact has been exploited here along with generic grasp

heuristics that compute potential grasp poses.

Algorithm 1 Grasp heuristic for cylindrical objects on tables

Require: Target pose T , Center position of the upper-arm

in the ready config. joint3, Table plane normal N

1: Approach vector, A←
[

ax ay az

]

2: θbest ← arctan2(T.y − joint3.y,T.x − joint3.x) +
wrist offset

3: for dθ in range(0,π/2) do

4: for θ in (θbest +dθ , θbest −dθ) do

5: rot N ← AngleAxis(θ ,N)
6: grasp pose ← T × rot N×A

7: grasp poses.add(grasp pose)

8: return grasp poses

One of the heuristics used to grasp cylindrical objects

like bottles and cans from a table or a counter-top is

described here. The heuristic creates natural looking grasp

poses. This particular heuristic aligns the robot’s forearm

along the vector between its shoulder joint and the object

center in the XY plane. This has the effect of minimizing

extreme joint angles and keeping the arm in a natural looking

configuration.

Fig. 6: Grasp heuristic for natural looking grasps for right arm for different
positions on the table.

Fig. 6 shows the grasp heuristic for an array of positions

on a table (black dots). The robot is centered at the blue

circle at (0,0) of the image. The longer, darker arrows point

to the approach angle of the hand. Darker angles are tried

before lighter angles.

Algorithm 1 describes the algorithm in detail. Basically,

θbest is the angle from the target point to the center of the

upper-arm in the ready configuration, offset by the 30 degree

wrist wedge. Then lesser quality grasp angles are on either

side.

Fig. 7: (a) The right arm in the hang position. (b) The right arm in the
wing position. (c) The right arm in the natural looking configuration used
for weighting the joint positions.

Another simple heuristic that can dramatically speed up

planning time is to simply plan from an easier arm configu-

ration. If the start configuration is close to the goal configu-

ration and is relatively free of obstacles, the planner can be

very fast. Therefore, before doing some table manipulation,

we put the robot’s arm in a ”ready” configuration where the

robot’s hand is above the table with the elbow bent (Fig. 7b).

C. Heuristic initialized optimization based planner

In our approach, a sequential convex optimization problem

is formed by creating constraints from the kinematic prop-

erties of the robot system and the interactions between the

environment and the robot. The trajectory is then represented

as a set of T waypoints. The following objective function is

used -

f (q1:T) =
T

∑
t=1

((qt+1−qt)
T Q1(qt+1−qt)+

(qt −qnom)
T Q2(qt −qnom)+dT

∆Q3d∆)

(1)

where qt ∈ ℜK describes the K DoF joint configuration at

the t-th timestep. The entire trajectory, q1:T is represented

as a sequence of joint configurations, Qi are weights, qnom

denotes a nominal configuration and d∆ is the Cartesian

deviation between the robot state qt and the desired con-

figuration. These quadratic terms represents penalizations

on the weighted sum on the joint deviations between the

waypoints, joint deviations from the nominal configuration,

and the Cartesian deviation of a link frame from a desired

frame. The first term smoothens the trajectory, the second

term pushes the robot configuration towards the nominal

configuration, and the third term pushes various link frames

to desired poses.

Many different constraints on the robot motion can be

added. Some of the various robot constraints that are used

in this planner are -

• Joint limits constraint can be specified as qt −qmin > 0

and qmax−qt > 0.

• Joint configuration constraint can be written as qt−qd =
0, which will basically lock the joint configuration to qd

at time t.

• Collision avoidance constraint - The robot is modeled as

a group of convex collision elements and the constraint

limits all the collision pairs to be greater than a min

tolerance threshold.

After potential grasp poses are computed using the grasp

heuristic described above, IK solutions are generated using

IKFast [21]. A weighted distance based on the robot’s link

geometry is calculated in the configuration space of all the

solutions from the “natural” robot configuration (Fig. 7c).

The solutions are then sorted based on the weighted dis-

tance from the current configuration. The planning space is

constrained by putting barrier walls behind the robot in the

planning environment task space so that the motions that are

generated by the planner look human-like and do not have

giant arm swings.

Algorithm 2 Heuristic initialized optimization based planner

Require: Target pose T , Environment mesh M, Seed trajec-

tories tseed

1: Potential grasp poses, G← graspHeuristic(T)

2: for grasp pose in G do

3: Q ← ikFast(grasp pose)

4: q← Natural IK configuration

5: distance ← ∑
n
i=1(wi× (Qi−qi))

2

6: ik sols.add(Q, distance)

7: sort(ik sols)

8: for id in tseed do

9: p ← problem(tseed[id], M, costs, constraints)

10: NEW THREAD(id, solve(p), result[id])

traj = result[successful thread id]

11: return traj

The planning environment now has a decimated mesh

of the environment, virtual barrier walls, and a bunch of

potential grasp joint configurations for planning a trajectory.

The planning problem is then constructed as an optimization

problem with a seed trajectory, the robot environment, the

costs and the constraints. The costs and constraints added

are a joint velocity cost on every joint based on the joint

weights calculated earlier from the link geometry, a collision

cost that penalizes when the robot gets closer to within

0.1m of an obstacle, the target configuration constraint, and

a Cartesian velocity of the end effector constraint. The

maximum number of allowed solver iterations is set at

20. Since convex optimization solvers are prone to getting

stuck in local minima, different seed trajectories are used to

construct several problems. These problems are then solved

in separate threads on the robot computer. An open source

convex optimization solver (BPMPD [22]) is used. Once

a solution is found with a particular seed trajectory, all

the other threads are killed and the collision free planned

trajectory is returned.

Depending on the computational capabilities of the on

board computer on the robot, the number of threads that

can be spawned will vary. In the tabletop manipulation

scenario, two threads with a no waypoint seed trajectory,

and a wing waypoint seed trajectory worked very well.

Based on the application, the planner can be tuned to seed

itself with waypoints that are spaced to avoid obstacles in

the manipulation workspace by statistically estimating the

probability of major obstacle positions in the environment.

Finally, for the final approach, range sensors in the palm of

the hand and on the bottom of the hand are used to servo the

robot hand close to the object for grasping. This is required

for two reasons - one, planning exactly to the grasp pose is

difficult as the object to be manipulated is modeled as an

obstacle in the planner, and two, the lower precision of the

arm due to a low cost construction.

V. EXPERIMENTS AND RESULTS

Obstacle avoidance while planning for a trajectory to do a

task is vital for manipulating in a household environment. We

did a few experiments to figure out a good motion planner

that works well when obstacle meshes are taken into account.

We pitted our optimization based planner against a sampling

based planner to see how good each one performs by looking

at their planning times w.r.t the number of meshes in the

planning environment. The amount of planning time required

for a BiRRT planner increases with the number of mesh

triangles but it is not the case for our optimization based

planner (Fig. 11).

We compared the performance of the trajectory opti-

mization planner with the grasp heuristic and without the

heuristic. The target pose was added as a constraint to the

planner and costs were added to simulate the effect of the

grasp heuristic. The planner failed to converge to a solution

in some of the cases and took a much longer time to plan a

path.

Experiments to gauge the performance differences of the

heuristic initialized trajectory optimization planner and the

BiRRT planner were also done. The results are shown

in Table II. The plan times for both the planners were

considered by giving the robot a target pose on a table with

the starting positions being under (hang) and over (wing)

(Fig. 7a, Fig. 7b) the table. The average plan time for TrajOpt

in the hang position is better than the average BiRRT plan

TABLE II: Performance of BiRRT with our optimization based planner with a grasp heuristic

Planner type Initial positions
Planning time

0-1 s 1-2 s 2-3 s 3 -5 s 5-10 s Average

BiRRT
Hang (198 poses) 0% 0% 2.53% 60.1% 37.37% 4.6 seconds
Wing (198 poses) 93.43% 5.05% 1.52% 0% 0% 0.21 seconds

Heuristic initialized trajectory optimization
Hang (198 poses) 87.37% 11.61% 0% 1.02% 0% 1.12 seconds
Wing (198 poses) 98.98% 1.02% 0% 0% 0% 0.59 seconds

Fig. 8: Executing a plan generated by the grasp heuristic initialized optimization based planner to a beer bottle in a cluttered environment.

Fig. 9: BiRRT and heuristically initialzed planner with a seed wing config-
uration trajectory and a natural IK goal.

Fig. 10: BiRRT and heuristically initialzed planner with a seed hang
configuration trajectory and a natural IK goal.

time by more than 3 seconds and the plan time in the wing

position is about 0.4 seconds slower in TrajOpt than BiRRT.

Fig. 9 and Fig. 10 shows the histogram plots of the number

of plans where the X axis shows the seconds taken to plan

and the Y axis shows the number of plans generated. The

BiRRT and optimization planner results for the wing position

look very similar but the results for the hang position are

very different showing the optimization planner to be more

reliable in terms of planning time.

We also performed experiments by using a random IK

solution instead of the “natural IK” solution as the goal

configuration. Both the BiRRT and the optimization based

planner successfully planned a path in most cases but the

plans looked very non-intuitive and in some cases, it took

more than 20 seconds to plan a path.

Fig. 11: Planning time using BiRRT and our optimization planner vs.
number of mesh triangles in the environment.

VI. CONCLUSIONS

We have presented our low cost approach to designing and

manufacturing the arms and torso of a wheeled humanoid

robot for performing tasks in the household. With commodity

motors and commodity parts, building custom gearboxes

and electronics, it is possible to build consumer-capable

manipulation without sacrificing speed, controllability, or lift

capacity required to operate in a home environment. While

we believe there is still an order of magnitude improvements

left before the price point could be palatable to a consumer,

the design of our arm provides guidance for future develop-

ment.

Based on our results, it was shown that optimization based

planners are better suited for doing manipulation tasks in

a household. We can add new costs/constraints like end

effector velocity in the task space, secondary goals of holding

something upright while manipulating, etc. in the planning

problem easily. We introduced a grasp heuristic initialized

trajectory optimization planner to plan for trajectory solu-

tions reliably and quickly which uses a decimated mesh

representation of the environment to avoid obstacles in the

environment (Fig. 8). The planner reliably plans within a

couple of seconds every time.

VII. ACKNOWLEDGEMENTS

Thanks to our previous team members: Annan Mozeika,

Mark Claffee, Jamie Milliken, Erik Steltz, and Tim Ohm.

REFERENCES

[1] “Rethink robotics sawyer - harmonic drive motors,” https://www.
allied-automation.com/meet-sawyer-baxters-little-brother-robot/, ac-
cessed: 2017-01-26.

[2] “Universal robots - harmonic drive motors,” http://harmonicdrive.de/
en/applications/universal-robots, accessed: 2017-01-26.

[3] “Kinova robotics - harmonic drive motors,” http://www.
maxonmotorusa.com/medias/sys master/root/8817214586910/
Kinova-Robotics.pdf?attachment=true, accessed: 2017-01-26.

[4] “Rethink robotics - robot prices,” http://www.rethinkrobotics.com/
build-a-bot/baxter/, accessed: 2017-01-26.

[5] “Kinova robotics - robot prices,” http://www.kinovarobotics.com/
service-robotics/build-prices/, accessed: 2017-01-26.

[6] “Franka emika - robot datasheet,” https://www.franka.de/, accessed:
2017-10-07.

[7] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” in Proceedings of the 2003

IEEE International Conference on Robotics and Automation, ICRA

2003, September 14-19, 2003, Taipei, Taiwan. IEEE, 2003, pp.
1824–1829. [Online]. Available: http://dx.doi.org/10.1109/ROBOT.
2003.1241860

[8] Bayesian Grasp Planning, 2011.
[9] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to

single-query path planning,” in Robotics and Automation, 2000. Pro-

ceedings. ICRA ’00. IEEE International Conference on, vol. 2, 2000,
pp. 995–1001 vol.2.

[10] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient
collision checking in sampling-based motion planning via safety
certificates,” The International Journal of Robotics Research,
vol. 35, no. 7, pp. 767–796, 2016. [Online]. Available: http:
//dx.doi.org/10.1177/0278364915625345

[11] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonprehen-
sile whole arm rearrangement planning on physics manifolds,” in 2015

IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 2508–2515.

[12] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in Robotics and

Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 489–494.

[13] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference

on, May 2011, pp. 4569–4574.
[14] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,

S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International

Journal of Robotics Research, 2014.
[15] L. Li, X. Long, and M. A. Gennert, “Birrtopt: A combined sam-

pling and optimizing motion planner for humanoid robots,” in 2016

IEEE-RAS 16th International Conference on Humanoid Robots (Hu-

manoids), Nov 2016, pp. 469–476.
[16] T. W. Dorn, A. G. Schache, and M. G. Pandy, “Muscular

strategy shift in human running: dependence of running speed
on hip and ankle muscle performance,” Journal of Experimental

Biology, vol. 215, no. 11, pp. 1944–1956, 2012. [Online]. Available:
http://jeb.biologists.org/content/215/11/1944

[17] M. Mihelj, “Human arm kinematics for robot based rehabilitation,”
Robotica, vol. 24, no. 3, pp. 377–383, May 2006. [Online]. Available:
http://dx.doi.org/10.1017/S0263574705002304

[18] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-

elling, Planning and Control, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[19] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[20] J. W. Sensinger, S. D. Clark, and J. F. Schorsch, “Exterior vs.
interior rotors in robotic brushless motors,” in 2011 IEEE International

Conference on Robotics and Automation, May 2011, pp. 2764–2770.
[21] R. Diankov, “Automated construction of robotic manipulation

programs,” Ph.D. dissertation, Carnegie Mellon University,
Robotics Institute, August 2010. [Online]. Available: http:
//www.programmingvision.com/rosen diankov thesis.pdf

[22] C. Mszros, “The bpmpd interior point solver for convex quadratic
problems,” Optimization Methods and Software, vol. 11, no. 1-4,
pp. 431–449, 1999. [Online]. Available: http://dx.doi.org/10.1080/
10556789908805758

