
Chapter 16
Managing Design Change with Functional
Blueprints

Jacob Beal, Aaron Adler, Fusun Yaman, Jeffrey Cleveland,
Hala Mostafa, Annan Mozeika, Kyle Usbeck, Gretchen Markiewicz
and Benjamin Axelrod

Abstract Long-lived complex electromechanical systems, such as vehicles or
industrial machinery, often need to be adapted for new uses or new environments.
Adapting the design for such a system is frequently complicated by the fact that
they are often tightly integrated, such that any change will have consequences
throughout the design, and must take many different aspects of the system into
consideration. Functional blueprints simplify adaptation by incorporating the rea-
sons for design decisions and their consequences directly into the specification of a
system. This allows a human designer to be supported by automated reasoning that
can identify potential conflicts, suggest design fixes, and propagate changes implicit
in the choices of the designer. This chapter presents the functional blueprints
approach in detail, including both review of prior work and new results.

16.1 Introduction

Complex electromechanical designs, such as robots, vehicles, and industrial
machinery, tend to be “brittle,” meaning that it is often difficult to modify any
significant aspect of the design without triggering a cascade of complex, difficult to
predict and often costly changes. Such cascading changes are the result of inter-
locking constraints between elements that are modified and other parts of the
design. An expert engineer, in fact, would likely consider many of these conse-
quential changes to actually be keeping the design the same. When considered from
the viewpoint of knowledge representation, a contradiction of this sort, where
complex changes are required to keep a property the same, often indicates a critical
flaw in representation.

J. Beal (&) � A. Adler � F. Yaman � J. Cleveland � H. Mostafa � K. Usbeck � G. Markiewicz
Raytheon BBN Technologies, Cambridge, MA, USA
e-mail: jakebeal@bbn.com

A. Mozeika � B. Axelrod
iRobot Corporation, Bedford, MA, USA

© Springer International Publishing Switzerland 2015
L. Redding and R. Roy (eds.), Through-life Engineering Services,
Decision Engineering, DOI 10.1007/978-3-319-12111-6_16

269



If system specifications were more closely aligned with the ways in which
human experts conceive of and work with designs, then many consequential
changes would be either implicit from the specification or simple to automate. This
would facilitate the development of design automation systems capable of making
similar judgements about how to best maintain design integration in the face of
changes. For complex electromechanical systems, such as aerospace vehicles, such
tools might be able to significantly decrease the time and cost of both initial
development and through-life upgrades and servicing. At the lower end of the
complexity scale, such tools could enable simpler systems such as tactical ground
robots to be rapidly modified in the field by operational experts in response to their
evolving needs. Functional blueprints [1] are a representation aimed at providing
such adapt- ability, inspired by biological development.

Functional blueprints capture expert knowledge by specifying a design as a set of
behavioural goals and topological constraints and a method for incrementally
adjusting the design when those goals or constraints are not being met. This chapter
introduces the concept of functional blueprints and their application to electrome-
chanical design. In particular, the work presented here focuses on robotic design,
where systems are typically complex and highly integrated, yet relatively small and
inexpensive, using an example robot similar to the iRobot LANdroid, but simpler and
less expensive, called the “miniDroid.” Section 16.2 introduces the functional blue-
print concept and how it can be applied to electromechanical design. Section 16.3 then
examines how interacting networks of functional blueprints can be used to generate
both parametric and qualitative adaptation of a design. Section 16.4 discusses
extensions to these approaches that can enable greater design plasticity. Finally,
Sect. 16.5 discusses currently feasible applications and presents key open problems.

16.1.1 Comparison with Alternative Approaches

Design automation for electrical and mechanical systems has a long history, in
which many significant results have been attained (e.g., [2–4]). A number of
evolutionary methods have also been developed (e.g., [5, 6]). Applications have
been limited, however, primarily due to the complexity and lack of smoothness in
the design spaces that must be searched. Commercial modeling and simulation tools
have thus been generally restricted to parametric exploration of relatively simple
subsystems (e.g., [7]). Constraint-based local search methods, such as Kangaroo [8]
and Comet [9], attempt to address this problem by using local parameter changes to
minimize constraint violations, similar to functional blueprints but without their
encoded knowledge of local repair strategies.

Control theory also addresses problems of system integration, but generally has
difficulty with large numbers of non-linearly interacting parts. A notable exception
may be viability theory [10], but its applicability is limited as it requires a system to
be specified completed in terms of differential equations.

270 J. Beal et al.



Other approaches to adaptive design of functional structures includes work on
distributed adaptive construction [11–13], and various projects in self-reconfigu-
rable robotics e.g., [14–16]. These approaches, however, are generally intended for
more homogeneous and loosely coupled systems and would be difficult to adapt to
electromechanical design. Recent work on “morphogenetic engineering” as pro-
posed by Doursat [17] and for robotics in [16, 18], aims to support more hetero-
geneous systems. In particular, Doursat has laid out a framework for evolvable
pattern formation [19], while Meng et al.’s generate patterns coordinating the
configuration of a modular robot [20]. A more formal mathematical model can be
found in [21], though the representational consequences are not yet explored.

16.2 Functional Blueprints

Functional blueprints, as defined in [1], specify a design in terms of behavioral goals
and a method for adjusting the structure when those goals are not met, rather than a
fixed structure. The approach is inspired by animal development, in which feedback
processes maintain continuous integrated functionality across diverse subsystems
such as muscles, nerves, and blood vessels as the animal grows from an embryo to a
mature adult, despite the fact that the relationship and relative sizes of the elements
making up these subsystems may change radically over time. Such decentralized
adaptation is a critical enabler for the evolution of natural systems [22, 23].

Perhaps surprisingly, engineered systems also often show a family resemblance
reminiscent of natural phylogeny, as in the iRobot product family shown in
Fig. 16.1, to which also belongs the “miniDroid” robot (Fig. 16.3) used as a running
example through the remainder of this chapter. This is due to the preference of
human engineers to adapt functioning designs rather than to build from scratch.
Functional blueprints aim to build on this parallel to enable engineered designs to
exhibit the same power of facilitated change as is exhibited by natural systems.

Based on the feedback model of angiogenesis [24] and similar processes, a
functional blueprint is thus defined as a collection of four elements: (1) a system
behaviour that degrades gracefully across some range of viability, (2) a stress metric
quantifying the degree and direction of stress on the system, (3) an incremental

Fig. 16.1 Families of engineered systems often exhibit “phylogenetic” relationships similar to
those of natural organisms. For example, these four iRobot products share a base body plan,
including symmetric two-wheel treads, flippers coaxial with one wheel, and a top-mounted sensor/
manipulator package. a iRobot Warrior, b iRobot PackBot, c iRobot SUGV, d iRobot LANdroid

16 Managing Design Change with Functional Blueprints 271



program that relieves stress through growth, shrinking, or other structural change,
and (4) a program to construct an initial viable minimal system.

In essence, this model uses stress as a coordinating signal by which indepen-
dently developing subsystems are integrated. The stress metric and incremental
program combine to shift the design back toward required functionality; graceful
degradation ensures that there is a margin for error in the interactions between
subsystems, and the minimal system ensures there is a viable place to start.
A network of interacting functional blueprints may thus be viewed as a piecewise
specification of a parametric model. Moreover, unlike a typical parametric model,
this approach does not require on a closed-form relationship between parameters.

16.2.1 Application to Electromechanical Design

The Morphogenetically Assisted Design Variation (MADV) architecture shown in
Fig. 16.2a applies the functional blueprint concept to the problem of electrome-
chanical design adaptation [25]. Under this architecture, electromechanical designs
are adapted following a three-phase loop: the current model is run through a set of
functional blueprint evaluators to determine stress on each functional blueprint;
from these stresses come requested adjustments of the design, which are blended
together to produce an incrementally updated design. The loop continues to iterate
until the design reaches a stable point—at zero stress if adaptation succeeds, and
greater than zero if it runs into a contradiction it cannot resolve.

Users control design variation either directly by modifying parameters, or
indirectly through modifications of the environment for simulation-based evalua-
tions [e.g., changing the height of an obstacle that a robot is expected to climb over
through a user interface like that in Fig. 16.2b]. In either case, this modification
injects stress into the system, which causes the values to begin adjusting toward a
new equilibrium. The user of the architecture can then observe the ongoing process

Fig. 16.2 a MADV architecture: designs are adapted following a three-phase loop: the current
model is run through evaluators to determine stress on each functional blueprint; from these
stresses come requested adjustments of the design, which are blended together to produce an
incrementally updated design. b Screenshot of prototype MADV software

272 J. Beal et al.



of adaptation to the new requirement, adjusting their specifications if they prove
infeasible or to give hints to help the system if it gets stuck. When the user is
satisfied, the final design can then be exported for further refinement or for
fabrication.

For the work discussed here, the functional blueprints for electromechanical
designs fall into four categories (presented in detail in [25]): (1) simulation-based
blueprints measuring the ability of the systems as a whole to accomplish a task
(e.g., a robot climbing a step), (2) families of COTS components (e.g., a collection
of servo motors with various torque limits), (3) closed form relations (e.g., the
identity relation between mass, density, and volume, the inequality between the
vertical dimensions of a motor and of the robot body that contains it, or a functional
specification requiring total mass less than a certain amount), and (4) user modi-
fication (e.g., a request to double the height of the step that can be climbed).

The collection of functional blueprints are integrated to form a complete network
using a manifold-based representation that mixes geometric and topological ele-
ments [26, 27]. This allows the representation to include both architectural deci-
sions (in the form of topological constraints and symmetries), geometric
commitments (in the form of parametric values and geometry-based constraints),
and functionality (in the form of functional blueprint constraints).

Finally, because parameters may have very different magnitudes, and because
multiple functional blueprints may act on the same parameter, functional blueprints
as implemented for MADV act on parameters only by expressing a stress in the
range of [0,1] and a direction; the combination of stresses then produce value
changes according to an adaptive process as described in Sect. 16.3.1.

Discussion and examples of applying the MADV architecture will largely focus
on the miniDroid robot, shown in Fig. 16.3. This system was created by iRobot,
based on the LANdroid from the robot family shown in Fig. 16.1 and slightly
expanded and simplified to be a better target for investigation of adaptive design.
Much of the work discussed in this chapter has been carried out using the mini-
Droid as a driving electromechanical design example, and it will thus be used as a
running example. Figure 16.4 shows a functional blueprint network representing the
miniDroid, including all design features at least 1 cm3 in volume. In total, this
comprises 23 components, 112 design parameters and 111 functional blueprints. Of
the functional blueprints, three (step-climbing, self-righting, and fast driving) are

Fig. 16.3 miniDroid base robot design, in CAD (b) and reality (a). c Screenshots from the
miniDroid ROS simulations

16 Managing Design Change with Functional Blueprints 273



evaluated with simulations implemented using ROS (Robot Operating System) [28]
and the Gazebo simulator, while the remainder are either closed-form or represent
COTS components.

16.2.2 Diagnosis and Assistive Design

Functional blueprint representations of electromechanical design can also provide
useful services at lower levels of automation. In particular, since functional blue-
prints capture the intentions and requirements of a design, they can be used to assist
a human designer with diagnosis of problems and suggestions for their solutions.
This is a much less radical change to existing processes than automatic adaptation,
yet still addresses many of the key challenges that motivate the investigation of
automatic adaptation.

Figure 16.5 shows an example of a transcript from a prototype functional
blueprint diagnosis system. The text for the explanations is generated automatically
from the structural relations encoded in the functional blueprints and the parameters

Fig. 16.4 Parameters, constraints, and initial values for the miniDroid: blue is parameters with an
explicit initial value, purple is parameters whose value is inferred, green indicates constraint
relations, and arrows link constraints to the parameters they affect (Color figure online)

Fig. 16.5 Example transcript generated by electromechanical diagnostic system based on
functional blueprint representation

274 J. Beal et al.



they interact with. These explanations may be able to clarify the relations of a
design to a human, and could form the basis of “expert advisor” systems for
assisting domain experts in adapting designs.

16.3 Adapting Electromechanical Designs

Having captured the relationship between form and function as a network of
functional blueprints, integrated adaptation of an electromechanical design may
then be carried out as an iterative process of incremental adjustments. Many
adaptations can be effectively carried out entirely by parametric variation, adjusting
effective step size to optimize convergence speed while maintaining coherent
design. Larger scale changes in specification, however, may also require qualitative
changes in the collection of components making up the design.

16.3.1 Convergence of Functional Blueprint Networks

Functional blueprints deliberately do not contain any specification of how they are
expected to interact with other functional blueprints: to do so would require an
exponential number of relationships to be considered and would prevent them from
being modular and capable to being reused in new designs. Instead, functional
blueprints interact indirectly, by changing parameters such that stress is induced in
other functional blueprints. That stress then induces those other functional blue-
prints to act, which may induce other stress, etc., propagating changes through the
design. This raises a critical question, however: under what conditions is it possible
to ensure that the stress thus generated will converge and return to zero (meaning
that an acceptable adaptation has been found) in a reasonable amount of time?

The graceful degradation property of functional blueprints ensures that it is
always possible to maintain the integration of a design. As proved in [1], it is
always possible to reduce step-size such that no parameter ever saturates on stress.
This does not, however, guarantee progress toward a user’s desired specifications.
Consider, for example, if one simultaneously requires a miniDroid to climb twice as
tall a step and to be small enough to fit in a pocket: this may simply be physically
impossible. It is also possible that a path to a solution may exist, but that inter-
actions in the functional blueprint specifications may render it inaccessible to any
particular algorithm.

If all functional blueprints are linear in their interactions, then convergence can
be guaranteed, as demonstrated in [25]. Furthermore, the speed of convergence is
quite rapid, outperforming genetic algorithms by more than two orders of magni-
tude. In most electromechanical designs, however, many interactions are non-linear;
consider for example, that scale typically has a quadratic relation with strength and
cubic with mass. Navigation of the stress space may then be treated as a non-convex

16 Managing Design Change with Functional Blueprints 275



optimization problem, around which there is already well-established literature. The
graceful degradation property of functional blueprints is helpful, as it ensures a
relatively smooth stress function with response to any given parameter, and thus
smoothness in the joint space as well. Unfortunately, many non-convex methods
are still extremely computationally expensive, particularly given simulation-driven
functional blueprints that lack a closed-form expression for the relationship between
parameters.

Even simple heuristic methods, however, appear to be able to support large-scale
variation in a real electromechanical design such as the miniDroid. One such heu-
ristic that has been investigated for balancing convergence speed versus stability is to
adaptively modify the size of each incremental adjustment of a parameter based on
global and local stress. Specifically, the heuristic for parameter adjustment is:

Sp ¼ max
r

sr;p
� � �

P
r sr;pP
r sr;p
�� �� SM ¼ max

p
Sp
�� ��� �

Dp ¼ e
Sp
SM

ð16:1Þ

where the sr,p is the stress exerted by relation (functional blueprint) r on parameter p
and e is the current incremental scaling factor for step size. The relative stress on a
parameter Sp is then proportioned based on the degree of conflict between the
stresses exerted on it by relations in the network, and the step size Dp proportioned
based on the maximum stress SM in the network and the incremental factor e.
Finally, each parameter is changed by multiplying its current value by 1 + Dp. The
size of e is critical to convergence: the larger that e is, the faster that the system will
converge, but if it is too large, then parameter values will oscillate and possibly
become unstable. The critical value for e may be difficult or impossible to determine
statically (and indeed, may vary depending on parameter values). It is therefore
useful to adaptively select the value of e based on the observed behaviour of the
system. One simple heuristic which performs well is to examine the value of stress
over a k-sample window: if stress is steadily decreasing, then multiply e by 2; if
more than some threshold amount of oscillation is observed, then divide e by 2.
Figure 16.6 shows examples of stress rising and converging during large-scale
design adaptation using these heuristics (as well as qualitative design change at
local minima, as discussed in the next section). Note in particular the transitions
between oscillatory and smooth behaviour, as e is adjusted to attempt to control the
rate of descent.

Using lightweight heuristics such as these, the time to execute one iteration of
incremental adaptation is driven primarily by the cost of evaluating the functional
blueprints, particularly those that are evaluated by simulation. Here, it is possible to
greatly accelerate adaptation by exploiting the graceful degradation property of
functional blueprints. Typically, only a small fraction of the relations in a system
are simulation-driven functional blueprints; most others implement fast-evaluating
relations such as specifications (e.g., a system mass limit), identity relations (e.g.,
total mass being the sum of component mass), physical relations (e.g., mass equals
volume times density), or availability of components (e.g., dimensions vs. torque

276 J. Beal et al.



for a family of COTS servo motors). Rather than compute simulations with every
iteration, the stress value of each simulation may be cached and reused, such that
there is only one simulation every n iterations. If the simulation has the required
graceful degradation property, then its stress should not change significantly in a
short time, so the rest of the network can continue adjusting while reducing the
number of simulations required (and thus the approximate time) by a factor of n.
Experiments have shown that it is likely possible to obtain one to two orders of
magnitude speed-up with this mechanism, depending on the particulars of the
design.

16.3.2 Parametric Versus Qualitative Design Changes

The discussion thus far has focused on parametric design changes, in which the
parameter values of a blueprint network are adjusted, but the network (i.e., the set of
components and their key topological relations) remains unchanged. Qualitative
changes in design, on the other hand, make changes in the network of interacting
parameters. For example, a new component may be added, an existing component
removed, or the geometric relations of components significantly changed. Typical
reasons for a human designer to make such a change include adding a new type of
function, limitations in available components, and indirect geometric interactions of
components.

Fig. 16.6 Example traces of stress over time for constraint resolution including functional
blueprints for qualitative change. Topological changes are marked with a red star; note that stress
resolution reaches a stable “stalled” point before each change. a Shows a miniDroid adapting as
the step size is raised from 10 to 25 cm, including shifting from one to two flipper drive motors to
maintain self-righting with increasing mass. b Shows a tetrahedral lander adding motors until
ultimately there are nine motors per panel as instrument package mass and power demand both
increase 10-fold

16 Managing Design Change with Functional Blueprints 277



Work thus far with functional blueprints has primarily focused on qualitative
change in response to component limitations. Several approaches to indirect geo-
metric interactions will be discussed in the next section, while decisions about
functional goals may be properly left to humans. Topological change in response to
component limitations is based around the addition of a “component” functional
blueprint that associates together the set of parameters describing a quantized
component with the set of relations bounding the component. Such functional
blueprints are triggered only when the system reaches a stress minima, at which
point the most stressed component in the network adjusts the number of instances
of the component, splitting or merging component instances as indicated by the
blueprint’s prescription for the current stress. When a single component splits into
multiple components, the functional blueprint network changes, adding “set”
parameters for those properties that scale with number (e.g., the mass and torque of
motors, but not their maximum rotational speed) and rewiring other relations to
connect to the set or original parameters depending on the class. A complementary
change occurs when a component set merges into a single component.

Both quantitative and qualitative variation have been tested by specifying large
changes to the values of functional parameters of the miniDroid (e.g., the step
height to be climbed, the amount of undercarriage clearance), and demonstrating
that the network of functional blueprints successfully adapts, returning to a zero-
stress state. Figure 16.6a shows an example of a stress trace from a typical such
adaptation experiment, in which changing the step height from 10 to 25 cm causes
parameter values to change throughout much of the design, as well as causing a
change from one to two flipper drive motors in order to maintain self-righting with
increasing mass. Notice the local minimum just before the number of flipper drive
motors increases, and the rapidly dispersed pulse of stress afterwards, as the new
values propagate through the network.

16.3.3 Reusability of Functional Blueprints

It is important to ensure that functional blueprints can often be reused from one design
to another design, because it allows the effort required to create a functional blueprint
to be amortized across the benefit of its use in many systems—a reuse expected to be
further facilitated by the adaptivity inherent to the functional blueprint concept. This
has been tested by constructing a design that reuses the self-righting functionality of
the miniDroid, but is generally extremely different in form: a simplified tetrahedral
Mars Lander based off of the landers for NASA’s Spirit and Opportunity rovers.

These landers used a tetrahedral shape to ensure that the rover they delivered
would be upright: three of the four panels open away from the fourth, like petals of
a flower, so that if the rover lands on any face other than the intended bottom, it will
be flipped upright by the opening of the panels. This functionality is similar to the
miniDroid using its flippers to right itself, so the functional blueprints associated
with this functionality should be reusable in the new design.

278 J. Beal et al.



Figure 16.7a shows the functional blueprint network for a simplified tetrahedral
lander containing an instrument package attached to its base and solar cells on the
interiors of the “side” panels, which are exposed when the tetrahedron opens,
containing a total of 11 modules (4 panels, 3 solar panels, 3 flipper motors, and 1
instrument package). The symmetries of the design allow these component to be
described with only 23 design parameters (abstracting away details of the instru-
ment package contents), which are connected together by 22 constraints. Of these
constraints, 18 are reused, including the flipping functional blueprint and the motor
library. In many cases, reuse entailed minor modification of parameters [e.g.,
changing to Mars gravity, linking the flipping blueprint with the alternate simula-
tion shown in Fig. 16.7b], but the main work required for each functional blueprint
design was reused. As a result, creation of the tetrahedral lander’s initial design and
blueprint constraint network took only 2 h.

This design, like the miniDroid, enables large-scale design variation to be driven
by changing critical parameters and allowing the rest of the parameters to adjust
accordingly. For example, Fig. 16.6(b) shows the result of increasing the mass and
power demand of the instrument package 10-fold. The lander grows in size,
increases its solar panels to deal with the expected higher demands from a larger
package, and undergoes qualitative change in the number of motors per panel,
eventually finding that nine motors per panel are required to ensure that the lander
can right itself. These appear are fairly regular intervals as the system gracefully
moves towards resolution, stalling just before the introduction of each motor.

16.4 Expanding the Plasticity of Design

The adaptations considered thus far have been limited to relatively simple geo-
metric forms and relations. The mixed geometric-topological representation used by
MADV, however, is capable of supporting a much broader variety of complex

Fig. 16.7 Demonstration of functional blueprint reusability with a simplified design for a
tetrahedral Mars lander based off of the landers for NASA’s Spirit and Opportunity rovers: a shows
the functional blueprint network for the lander, b shows a screenshot from a simulation carried out
for the self-righting functional blueprint, one of a number reused from the miniDroid

16 Managing Design Change with Functional Blueprints 279



geometric forms [26, 27]. This potential for flexibility is both an advantage, in that
it can in principle support plastic deformation of designs, and a challenge, in that
the number of such possible deformations is extremely large.

Once again, the biological roots of functional blueprints provide inspiration for
how to tackle this problem, though the answers are less well developed than for the
more constrained forms of design change discussed in the previous section. In
animals, the process of morphogenesis development of the organism’s basic form
from an initial egg effectively specifies a hierarchy of relationships and coordinate
systems that “canalize” which changes of form are simple and which are compli-
cated [22, 29]. As development continues, function-based feedback drives many
forms of system integration [23], such as the ramification of blood vessels (driven
ultimate by oxygen demand from tissue and by tension in the walls of blood
vessels) and the assortation of neurons to control muscles (driven by competition
for effective control).

Both of these forces are known to greatly facilitate the resilience and evolution
of biological organisms [22, 23], so such developmental processes may also pro-
vide a useful model for facilitating greater plasticity in electromechanical designs.
Such developmental models are in effect applying functional blueprints on a second
and finer level, not just in transitioning from design to design, but also as a feedback
process in the translation of a design specification to a geometric form that can then
be evaluated by the “higher-level” functional blueprints already considered.

References [26, 30] present a variety of approaches for integrating such devel-
opmental models with the MADV architecture. At the coarsest scale [30] presents a
“tissue development” model in which the topological and parameter relations of a
design are generated by applying a set of developmental rules. Each developmental
rule is an independent and asynchronous operation that applies a sequence of
operators (the rule’s body) on any tissue that matches the rule’s preconditions.
Executing a set of rules on an initially undifferentiated electromechanical body
(“egg”), results in a body plan of a design “fetus” made up of various “organs” like
limbs, flippers and wheels—the topological component of the mixed topological/
geometric representation. Parameters in the rules become the geometric parameters
constraining the topological elements generated by applying the rules, with design
symmetries emerging from the repeated application of a single rule. Figure 16.8a
shows an example of the basic miniDroid body-plan generated by a set of 12 rules
operating in eight conceptual stages. Detailed description of the rules and stages
may be found in [30].

The layout of wires, cables, and other such connections is another area of design
where plasticity of form is useful, as these often have a great deal of flexibility in
how they can be routed from place to place within a design. Making analogy to the
chemotactic process by which neurons grow axons to their appropriate targets in
biological development, routing of wires and other linear connectors can be
accomplished by “seeding” each connector at one end-point and simulating an
informational gradient from the other [26]. The connectors are then routed by
climbing up the gradient, avoiding one another and fixed elements of the design as
they grow.

280 J. Beal et al.



Figure 16.8b shows an example of this wiring model, from [26], being applied to
lay out power, ground, and signal wires connecting the batteries, CPU, encoder, and
motors of a miniDroid.

At a finer grain, Figs. 16.8c, 16.8d show cellular models of development [26].
These cellular models have the advantage that the distribution of “cells” can directly
represent arbitrarily complex shapes, but the disadvantage that it is necessary to
interpret these shapes to re-connect them with the parametric relationships that
higher-level functional blueprints act upon. Another challenge is the tension
between the resolution of the cells and the cost of simulation. Figure 16.8c shows
how a fine-grained cellular model, implemented using the manifold geometry
operations of the Proto [31, 32] aggregate programming language, allows a
developmental plan to distort to match the conditions of its execution. In this case,
the layout of electronics, wheels, and motors in a miniDroid “body plan,” executing
on a model of 2,000 cells distributed through a rectilinear 3D volume of space, is
changed in proportion (left) and twisted by a change in coordinate system (right),
showing the inherent geometric adaptation of the program. Further coherence in
adaptation can be enabled by soft-body simulation, which can allow design ele-
ments to adhere, compress, deform, penetrate, or otherwise physically interact with
one another for co-adaptation during the developmental process. Figure 16.8d

Fig. 16.8 a Rule-based development of a miniDroid topology from an initial undifferentiated
“egg.” b Neuromorphic routing connecting electronic components in the interior of a miniDroid
design with wires carrying power (red), ground (green), and signal (other colors). c Distortion
tolerant developmental program using the Proto manifold model to automatically adapt to
execution on a modified underlying shape, e.g., shifting from a thin rectangle (left) to an square
with a twisted coordinate system (right). d miniDroid flipper growing from the tip (green) in
adherent cell simulation using MASON (Color figure online)

16 Managing Design Change with Functional Blueprints 281



shows an example of a computationally inexpensive soft-body model implemented
using MASON, a Javabased multi-agent simulator [33], implementing tapering of a
miniDroid flipper by means of an adhesion-based growth process.

16.5 Applications and Open Problems

This chapter has presented the concept of functional blueprints, showing that they
are a viable and potentially scalable approach to adaptation of complex electro-
mechanical designs. Applied in combination with unified topological-geometrical
representation and self-tuning step sizes, functional blueprints can adapt complex
designs effectively across a large range of variation, producing both quantitative
and qualitative changes that maintain functionality in a changing electromechanical
design. Functional blueprints are also composable and reusable, as demonstrated by
the transfer of blueprints from the miniDroid design to the tetrahedral lander design,
and the approach may be further extended to allow greater adaptability through the
plastic deformation of components.

The visionary goals for this approach are two-fold. The first is to allow non-
experts to produce design variations that satisfy new requirements, even without a
good understanding of subsystems, simply by indicating the critical changes that
are needed and allowing the rest of the complementary changes to propagate
automatically. The second is to enable a continuous design and manufacturing
cycle, in which emerging additive manufacturing technology joins with a functional
blueprint driven radically decreased cost of redesign to enable even highly complex
electromechanical systems like aerospace vehicles to be updated on the fly, rapidly
incorporating new technologies and responding to changing requirements. Realiz-
ing these visions will require an investment to develop libraries that associate
existing CAD components with corresponding functional blueprints, as well as
development of appropriate user interfaces, and additional work to enhance the
speed and reliability with which large networks of functional blueprints can be
guaranteed to converge.

Because functional blueprints encode knowledge about a design, they can also
be used to assist human designers in other ways than adaptation. In particular,
functional blueprints can not only detect potential design problems but can be used
to generate human-readable explanations of the causes of those problems and
suggestions for approaches to fixing them. This holds the potential for improve-
ments in the way that mechanical engineering is conducted and taught.

In the practice of mechanical engineering, functional blueprints can be used to
import the software notion of continuous integration into electromechanical design.
Continuous integration is an important tool for rapid and reliable software engi-
neering, in which every incremental step in the realization of a design is auto-
matically tested against a suite of “regression tests” ensuring that important existing
functionality is not endangered by progress in other areas. By evaluating the ability
of a design to satisfy requirements, functional blueprints could be used to

282 J. Beal et al.



effectively implement such regression testing, decreasing the cost of integration and
the number of design problems identified after production.

Finally, functional blueprints could also be used in several ways to help educate
students on electromechanical design and/or manufacturing. First, functional blue-
prints could be used as part of an active learning process to give a student instan-
taneous feedback on the strengths and weaknesses of their current design. Second,
since functional blueprints can be used to adapt a design to find an integrated
solution, this sort of “look-ahead” could be used either to give students hints to help
with design or to evaluate what aspects of design a student is most struggling with,
and therefore to adaptively present or recall relevant curriculum elements.

In summary: the engineering of complex electromechanical systems is an
important problem that impacts society in myriad ways. Functional blueprints offer
the potential to improve the engineering process at every phase: assistance in
design, improved diagnosis of potential faults, simplification of through-life
adaptation and redesign, democratization of engineering, and even improvement of
the education of future electromechanical engineers.

References

1. Beal J (2011) Functional blueprints: an approach to modularity in grown systems. Swarm
Intell 5(3):250–281

2. Campbell MI, Cagan J, Kotovsky K (1999) A-Design: an agent-based approach to conceptual
design in a dynamic environment. Res Eng Design 11(3):172–192

3. Hoover SP, Rinderle JR (1989) A synthesis strategy for mechanical devices. Res Eng Design 1
(2):87–103

4. Fromherz MPJ, Bobrow DG, de Kleer J (2003) Model-based computing for design and control
of reconfigurable systems. AI Magazine 24(4):120–130

5. Fan Z, Wang J, Goodman E (2005) Cutting edge robotics. In: Kordic V, Lazinica A and
Merdan M (eds) Exploring open-ended design space of mechatronic systems, Pro Literatur
Verlag, Germany, pp 707–726

6. Koza JR, Bennett III FH, Andre D, Keane MA (1998) Adaptive computing in design and
manufacture, Springer, Berlin, pp 177–192

7. ANSYS, Inc. ANSYS DesignXplorer (2013) http://www.ansys.com/Products/Workflow
+Technology/ANSYS+Workbench+Platform/ANSYS+DesignXplorer

8. Newton MAH, Pham DN, Sattar A, Maher MJ (2011) Kangaroo: an efficient constraint-based
local search system. In: Principles and practice of constraint programming 17th international
conference, CP, Italy, pp 645–659

9. Van Hentenryck P, Michel L (2005) Constraint-based local search, MIT Press
10. Aubin JP (1991) Viability theory, Birkhauser
11. Werfel J (2006) Anthills built to order: Automating construction with artificial swarms. Ph.D

thesis, MIT
12. Werfel J, Nagpal R (2007) In: International conference on intelligent robots and system
13. Estevez N (2007) Functional blueprints: a dynamical systems approach to structure

representation. Cornell University
14. Stoy K, Nagpal R (2004) Self-reconfiguration using directed growth. In: International

symposium on distributed autonomous robotic system (DARS), Springer-Verlag, New York,
pp 3–12

16 Managing Design Change with Functional Blueprints 283

http://www.ansys.com/Products/Work<LIG>fl</LIG>ow+Technology/ANSYS+Workbench+Platform/ANSYS+DesignXplorer
http://www.ansys.com/Products/Work<LIG>fl</LIG>ow+Technology/ANSYS+Workbench+Platform/ANSYS+DesignXplorer


15. O’Grady R, Christensen AL, Dorigo M (2009) SWARMORPH: multi-robot morphogenesis
using directional self-assembly. IEEE Trans Rob 25(3):738–743

16. O’Grady R, Christensen AL, Pinciroli C, Dorigo M (2010) Robots autonomously self-
assemble into dedicated morphologies to solve different tasks. In: AAMAS, pp 1517–1518

17. Doursat R (2011) Morphogenetic engineering weds bio self-organization to human-designed
systems. PerAda Magazine

18. Jin Y, Meng Y (2011) Morphogenetic robotics: an emerging new field in developmental
robotics. IEEE Trans syst Man Cybern C Appl Rev 41(2):145–160

19. Doursat R (2008) Organic computing. In: Wurtz R (ed) Springer, Berlin, pp 167–200
20. Meng Y, Zhang Y, Jin Y (2010) A morphogenetic approach to self-reconfigurable modular

robots using a hybrid hierarchical gene regulatory network. In: International conference on the
synthesis and simulation of living systems, pp 765–772

21. MacLennan B (2010) Models and Mechanisms for Artificial Morphogenesis. In: Natural
computing, Proceedings in information and communications technology, vol 2. pp 23–33

22. Carroll SB (2005) Endless forms most beautiful, W.W. Norton and Company, New York
23. Kirschner MW, Norton JC (2005) The plausibility of life: resolving darwin’s dilemma, Yale

University Press, New Haven
24. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660
25. Adler A, Yaman F, Beal J, Cleveland J, Mostafa H, Mozeika A (2013) A morphogenetically

assisted design variation tool. In: AAAI, pp 9–15
26. Beal J, Mostafa H, Axelrod B, Mozeika A, Adler A, Markiewicz G, Usbeck K (2012) A

manifold operator representation for adaptive design. In: GECCO 2012, pp 529–536
27. Beal J, Adler A, Mostafa H (2013) Mixed geometric-topological representation for

electromechanical design. In: Extended abstract at GECCO 2013, pp 105–106
28. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng AY

(2009) In: Proceedings of the open-source software workshop at the international conference
on robotics and automation (ICRA)

29. Waddington CH (1942) Nature 150(3811):563
30. Beal J, Lowell J, Mozeika A, Usbeck K (2011) Using morphogenetic models to develop

spatial structures. In: Spatial computing workshop 2011 at IEEE SASO ’11, pp 85–90
31. Beal J, Bachrach J (2006) IEEE intelligent systems, pp 10–19
32. MIT Proto software available at http://mitproto.net. Retrieved 16 Sept 2012
33. Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) Simulation 82(7):517

284 J. Beal et al.

http://mitproto.net

	16 Managing Design Change with Functional Blueprints
	Abstract
	16.1 Introduction
	16.1.1 Comparison with Alternative Approaches

	16.2 Functional Blueprints
	16.2.1 Application to Electromechanical Design
	16.2.2 Diagnosis and Assistive Design

	16.3 Adapting Electromechanical Designs
	16.3.1 Convergence of Functional Blueprint Networks
	16.3.2 Parametric Versus Qualitative Design Changes
	16.3.3 Reusability of Functional Blueprints

	16.4 Expanding the Plasticity of Design
	16.5 Applications and Open Problems
	References


