Ben Axelrod
4/16/2006
CS 7210 Final Project

Reference Broadcast Time Averaging

| T8 (oY L1 o7 (6) s PO RO UPUOPUPPPPUPUPPRPPPPRR 1
APPTOACKH. ... et e e e e e e e e bt e e e e e nbaaeeas 1
ALZOTIRM OVETVIEWeeiiiiiiiieiiiiieeeeitee et e ettt e e ettt e e et e e s enbbeeeeesnnbeeeeensaeeaeenns 1
TIME ON the GINATS ...t eeanns 2
BN TN 110101) 4
Full Description of AIZorithm...........cccooiiiiiiiiiii e 4
RESUIS ANA DISCUSSIONuvviviiiiiiiiiiiiiitiiitiieeteteeteaetetteeteessesaseeasssaseseasesssaseeraasrasaaean—ar—————. 7
D S 15 (6] 1 1P SUROURRUPUPPRRPPURPRRRt 11
LO10) 1 1e] 1113 10) o HU PP PUROUPPUPPPPRPPPURPRPRt 12
ACKNOWIEAZEMENLSvviiieiiiiieeeiiiee et et e e e ettt e e e eebteeeeenbaeee s 12
R OTEIICES. ... vttt ettt aa s sssssssnsssssssnssnnnnsnnnnnnes 12
Introduction

Time synchronization is important for all distributed systems. Wireless sensor
networks often rely on synchronized clocks for data fusion and synchronized behavior.
However, because of the requirements of these low-power and low-cost devices, clock
skews are often very large. This paper presents a simple variant of the Reference-
Broadcast Synchronization scheme [4] geared towards implementation on the GNATSs
[9]. This new scheme, called Reference Broadcast Time Averaging is simple enough to
run on simple sensor networks such as the GNATs. While it ultimately failed to be tested
on the GNATS due to hardware limitations, the algorithm was tested in simulation with
encouraging results. Fast convergence times were observed for fully connected
networks.

Approach

Algorithm Overview

Many time synchronization schemes employ a centralized server in which all of
the nodes synchronize with. Cristian's algorithm is one such scheme. Other methods
measure round trip delay of the messages such as NTP [8]. Both of these techniques are
sub-optimal for wireless sensor networks such as the GNATs. These sensor networks
usually do not have a centralized server or reliable communication channels. It is
because of these limitations that a reference broadcast scheme must be employed.

Axelrod 1

Reference broadcast schemes work by using a third party to aid two nodes in
synchronizing with each other. This method lends itself naturally to sensor networks
where most communication is done through broadcasts. The process is as follows:
(please refer to Figure 1). First, node A broadcasts a short “ping” message to its
neighbors. This message contains only minimal information such as node A’s ID number
and a message ID number. It does not matter when this ping is sent and there is no
timestamp on the message.

®@ @ 6

Figure 1 — Reference Broadcast

Nodes B, C, and D will all receive this ping at nearly the same time. This is
another advantage of this algorithm with the GNATSs. The GNATSs use infrared light to
communicate over short distances (less than a meter). Therefore any discrepancy in the
arrival time is solely due to the infrared receiver saturating and the microcontroller
interrupt handler. The infrared receiver saturation time can be neglected, and the
interrupt service routine will be triggered three or four ps after arrival. Nodes B, C, and
D must now store A’s ID, the ping message 1D, and their local clock when they received
the ping.

Then, these nodes will use this information to synchronize with each other. For
example, node B will broadcast a synchronization request to it neighbors, and of these, C
will be able to synch itself with B. Elson et al. recorded the clock offsets then used linear
regression to estimate the drift between each pair of nodes. Because of the limited
resources of the GNATS, a simpler scheme had to be developed. Basically, when a node
receives a synchronization request, it averages the times each node heard the ping. Then
it uses the difference to update its current time and skew. This has the effect of averaging
all the clocks in the network.

Time on the GNATs

Before the in depth analysis of the algorithm, it will help to have an overview of
time on the GNATs. The GNATSs have a 4 MHz RC oscillator which is subject to quite a
bit of drift. In a small experiment with only 6 GNATS, after only 18 seconds of running,
there was over half a second difference between the fastest and slowest GNATs. This is

Axelrod 2

about £1.5 % of drift. This discrepancy arises from variable battery voltage and
manufacturing differences in the timer circuitry. There are however, two easy ways to
tune the clock for precise timing. These methods allow the compensation for the clock
skew to be stored in memory for later use. Because of the limited memory of the
GNATs, usually only one application can be run at a time. So the skews can be adjusted
once, then when another application is swapped in, it can take advantage of the pre-tuned
clocks.

The first method of clock adjustment is a hardware tuning register. This 5 bit
register allows for up to £12.5 % of tuning. This is equivalent to 0.78% of tuning per bit,
which seems too coarse of a resolution for this purpose. However, this method is
attractive because the tuning is done entirely in hardware.

The second and preferred method of clock tuning sets the period at which the
timer overflows. The 4 MHz oscillator gets divided by 4 because there are 4 oscillator
periods per instruction on the GNAT’s PIC16F87 microcontroller. This 1 ps instruction
clock is then divided by 16 in a pre-scaler. Then the timer overflows every 256
increments. Finally, this goes through the post-scaler which enforces 16 overflows per
interrupt. This interrupt increments the “official time” of the GNATs. With the settings
mentioned here, this interrupt gets called about 15 times per second. This 15" of a
second is the native unit of time on the GNATS and is called a “tick”. The entire
calculation can be seen in Figure 2.

4-10° oxcillations | instruction [timer increment overflow inferrupt ltick |_15.26 ticks
second 4 ogcillations || 16 mstructions || 256 timer increments | 16 overflows second

Lnterrupt

i Clock
RC Oscillator Insctf;ﬁtéon |P1‘e-Scale1'| | Timer Period | |Post-Scale1‘| Interrupt

Figure 2 — GNATs Timer Calculation

Because of other restrictions in the GNAT OS, there was only an 8 bit timer
available for general timekeeping. This timer normally overflows at OxFF, but its period
can be set. This is the second method for tuning the clock. By changing the period of the
timer, we have a much finer grained control of the skew of this clock.

In preparation for this algorithm to be run on the GNATS, many changes to the
API were made. Despite these changes, an unforeseen hardware limitation prevented any
real testing on the GNATSs. The infrared communication protocol the GNATS use
requires precise timing of the message bits. This means that when a GNAT is sending or
receiving a message, all other interrupts must be disabled. So if a message is long
enough, it will make the GNAT skip a tick. The messages we need to send last 55 ms
and the interrupt occurs every 66 ms, so there is a significant probability of the GNAT
skipping a tick on every message. This problem can be remedied by checking the timer
before and after the message interrupts then adding in the skipped tick if necessary. The
trouble arises because the value of the post-scaler (16 overflows per interrupt) is not
available to the user program. This is essential to be able to determine if there is a lost

Axelrod 3

tick. It was determined that this synchronization scheme cannot handle this high tick loss
rate, and testing on the GNATSs was abandoned.

The Simulator

The reason this algorithm was not implemented in simulation first is due to the
difficulty in getting a discrete and sequential simulator to accurately model the diverging
clocks of a sensor network. Most simulators run the code in strict lock-step. Either each
agent’s code gets run sequentially then the changes applied in parallel (as in TeamBots
[1]), or they are run purely sequentially (as in MASON [7]). The MASON simulator was
chosen for this project due to its features and the author’s familiarity with the software.

In MASON, the code for each agent gets run sequentially. The mechanism which
allows us to simulate diverging clocks is the modulo operator. Each agent randomly
chooses a skew at instantiation. Then that agent’s code is only run when the iteration
mod that skew is zero. The skews were chosen uniformly random between 50 and 60. It
was found that this range seemed to model the speed of clock divergence of the GNATs.
Another feature of MASON randomizes the order in which the agents are run at every
iteration. This further helps to simulate a real network.

Additionally, code does not transfer very well between simulators and the real
devices. Code for the GNATS is event based. Meaning that you send messages to other
GNATS, and you have a specific function that gets called whenever you receive a
message. In MASON, there is no concept of sending a message. There is only data
structures. To “send a message” involves you collecting a list of pointers your neighbor
objects, then dereferencing the pointers and putting your data in your neighbors.
Although it gets the job done, it is a slightly backwards way of thinking about (and
coding) the problem.

Full Description of Algorithm

This algorithm involves only three simple equations to average the clock offset
and skew between two neighbors. Figure 3 shows an overview of the message passing
involved. This diagram is from the viewpoint of node C. The only times node C needs to
know about are when it heard the ping, when its neighbor heard the ping, and the current
time.

Axelrod 4

B +
|
|
|
C » *
| I
My ping time My receive time
(Also current time)

Figure 3 — Important Message Times

The first step in the algorithm is to average the times when both you and your
neighbor heard the ping from an external source. This is simply:

neighbor's ping time + my ping time (1)
5 .

averaged ping time =

Keep in mind that the neighbor’s ping time will be in the synchronization
message sent to you, and your ping time will be in your own list of pings. The next step
is to scale the current time appropriately due to the new ping time. This is most easily
thought of as a “similar triangles” argument and is illustrated in Figure 4.

é CT
=
[
Z
b
=
G Me NT
APT
Averaged Time
Receive
Synch Request
NPT
Meighbor ———¢———
Ping
global time

Figure 4 — Current Time Update Argument

In this figure, MPT = my ping time, APT = average ping time, NPT = neighbor
ping time, and CT is the current time which are all known. The current time becomes the
old time, and the new time (NT) is simply:

old time - averaged ping time @)
my ping time '

new time =

Please note that “old time” was the most up to date clock reading until this equation. It
will have to be stored for use in the next equation. The final step is to modify the skew of

Axelrod 5

the clock. This is an important step for clock synchronization. The skew update equation
is just:

_ skew - (old time —my ping time)

skew 3)

new time —averaged ping time

It is easy to see the intuition behind this equation from examination of Figure 5.
The skew merely needs to be adjusted by the ratio of A/B as seen in the figure. It may
seem counter-intuitive that we are turning back the clock, yet increasing the skew value
(from the example in the diagram). This is because the larger skew value will make the
clock slow down, which is what we want.

w CT
5 —
T
5
}A
B MPT
<1
=
2 Me NT
"
APT } 5
Averaged Time
Ping Receive
Synch Reguest

global time

Figure 5 — Skew Update Argument

It was found to be necessary to remove the ping from memory after you have
completed this synchronization. This prevents the node from re-synching to the same
data more than once. Here is some simple pseudo code to further elaborate the algorithm.
This pseudo code is written from an event-based paradigm similar to the one found on the
GNATSs. It is assumes that there is external code to call on Receive Ping and
On_Receive Synch appropriately as soon as a message is received. Also not shown are
appropriate bounds on the NewTime and skew equations, which will be device dependant.

On_Receive Ping(ping msg)
{
if (ping msg.pingerID is already in ping list)
Overwrite old ping by same neighbor
else
Add ping msg to ping list
}

On_Receive Synch(synch msg)
{
Let ‘line’ be the line of the ping list where synch msg.pingerID and
synch msg.pingMsgID match an entry
if (no match)

return
AveragedPingTime = (ping list[line].my ping time + synch msg.ping time) / 2
0l1ldTime = getTimer () ;
NewTime = OldTime * AveragedPingTime / ping list([line].my ping time
setTimer (NewTime) ;

Axelrod 6

Skew = Skew * (OldTime - ping list[line].my ping time) / (NewTime - AveragedPingTime)
Remove line from ping list

}

main ()
{
while (1)
{
With small probability
Send a ping message
With small probability
Send a synch message

Results and Discussion

Several experiments were run in simulation to evaluate the effectiveness of this
algorithm. The same parameters of the algorithm were used for all experiments. Skews
are randomly chosen between 50 and 60. Nodes emit a visual flash every 3 “ticks” for
human visual verification. Keep in mind a tick occurs every 50 — 60 iterations depending
on the skew of the node. Every time the ticks were incremented, each node sent a ping
message with 0.2 probability and a synchronization message with 0.2 probability. The
simulator ran at about 250 iterations per second. Therefore, each node sent a ping and
synchronization message about once per second.

The first and simplest experiment is a group of 19 nodes which are fully
connected as illustrated in Figure 6.

Figure 6 — 19 Fully Connected Nodes

The experiment was run as follows: The nodes were allowed to run normally
without any synchronization code for 2000 iterations. This allowed the clocks to diverge
a fair amount. At this time, it was observed that the nodes stopped blinking in unison,
and there was continuous blinking. Then the synchronization code was switched on for
2000 iterations. After this time, the nodes were seen to be blinking in unison again.
Next, the synchronization code was turned off for the final 2000 iterations, and the nodes
continued to blink in unison. This demonstrated that the algorithm fully synchronized the
clocks and that the clocks stayed synched even after the algorithm was not active. The
clock values for each node were recorded every 100 iterations. The divergence of the
clock values can be seen plotted in Figure 7. The divergence is simply the max time
minus the min time value at that iteration.

Axelrod 7

Fully Connected Graph

Divergence

VA

0 1000 2000 3000 4000 5000 6000
Iteration

Figure 7 — Fully Connected Graph Results

It is easy to see the three portions of the graph where the synchronization code
was on or off. It is remarkable how fast the network converges. After only about 200
iterations, the divergence was down to a reasonable level.

The next experiment was on a hexagonal grid of 19 nodes which is not fully
connected as seen in Figure 8. This configuration is much more typical for sensor
networks.

e
P
5

L
, \g
>

/
&
L &S

Figure 8 — Hexagonal Grid
Again, the synchronization was turned on at iteration 2000, however this time it

was necessary to leave it on until iteration 15000. This configuration converged much
more slowly as seen in Figure 9.

Axelrod 8

Hexagonal Grid

Divergence

2

~—

0 2000 4000 6000

8000 10000 12000 14000 16000 18000

Iterations

Figure 9 — Hexagonal Grid Results

From these results we can conclude that this algorithm is much more suited to
fully connected situations. This is because each node only averages with one neighbor at
a time. When you average to one neighbor, it can bring you farther away from a
neighbor on the other side. It seems that this algorithm requires nodes to have many
mutual neighbors. A hexagonal grid is the minimal requirement for this. A fully
connected network is ideal. And a square network (as seen in Figure 10) will fail

outright.

¢ o o o o

Figure 10 — Square Network with No Mutual Neighbors

To continue testing this algorithm we try starting the synchronization code
immediately. This was run on the hexagonal grid above. The results are strikingly
similar to the previous run as can be seen in Figure 11. Despite starting with zero clock
divergence, the algorithm had trouble converging the clocks. This indicates that the skew
does not converge unless there is a large offset in the clocks. This is verified by
examining Equation 3. If there is a small difference in the times, the skew will either be
multiplied or divided by a number very close to zero. When this occurs, bounds checking

will not allow the skew to be changed.

Axelrod 9

Hexagonal Grid (Full Synch)

6 hé

LA
|id

Divergence

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

Figure 11 — Hexagonal Grid Results (Full Synch)

Another interesting arrangement that we can use to test this algorithm is the H-
Bridge as seen in Figure 12. This network has two fully connected islands connected

through a single link.
& —&

Figure 12 — H-Bride Network

The results show that the two islands converge to be internally consistent very
quickly. However, because of the single link between them, the entire system cannot
converge. So, with slightly different skews, the two islands diverge. This can be seen in
the results in Figure 13. In this experiment the synchronization code was switched on at
2000 iterations, then left on.

Axelrod 10

H-Bridge
—e— Total System
—m—Island 1
10 {—
—a—lsland 2 /
8

Divergence
o

\4 u

n

0 : et T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteraion

Figure 13 — H-Bridge Results

Extensions

This algorithm seeks to rectify the problem of clock synchronization by averaging
all the clocks in the system. While this does not guarantee global “correct” time as one
would get with a centralized approach, it is acceptable because the clocks can then be
thought of as logical clocks. This is sufficient for many applications. See for example
Lamport’s logical clocks [6].

It was found that this algorithm only works well in fully connected networks.
This may be acceptable for some applications, but most sensor networks do not have this
luxury. As mentioned earlier, this algorithm requires nodes to have many mutual
neighbors. This limitation is perhaps indicative of all reference broadcast
synchronization schemes. Therefore, it should be examined how this algorithm can be
improved and extended to work in regular grid type networks.

Perhaps a hybrid scheme is necessary to remedy this problem. In addition to
using reference broadcasts, the nodes should also measure round-trip delay and adjust
clocks similar to NTP. To improve accuracy, the nodes should only employ this method
with the neighbors it suspects are not mutual. For example, only the bridge nodes will
employ this scheme in the H-Bridge network.

Another small implementation issue is the fact that this algorithm assumes the
nodes have a common start time. While it was shown that some amount of divergence
can be handled, the amount this algorithm can handle is unclear. If, for example, there
are several minutes between the start up times of the nodes, the convergence time may be
unreasonable. Again, it may be possible to hybridize this algorithm with another
approach to remedy this. However, more investigation is required.

Axelrod 11

It would be nice to eventually implement some sort of time synchronization on
the GNATs. Whether this can be done with the current hardware and software still
remains to be seen. It may be possible that a re-organization of resources will allow finer
resolution on the timer and hence the ability to account for tick losses. However, this
undertaking is beyond the scope of this project.

This algorithm makes a strong assumption that all nodes in the network are
benign. If one of the nodes was faulty either by a crash or malevolent code, it could
throw off the entire network. There are many methods for dealing with byzantine faults
such as [2] and [10].

With synchronized clocks, many applications open up to the GNATs. They might
even be able to be used as a more formal distributed system. If so, they will require fault
tolerant operation and discovery, replicated data [5], data fusion, and possibly global state
estimation [3].

Conclusion

This paper presented a new simplified version of reference broadcast time
synchronization called reference broadcast time averaging. This method is simple
enough to be run on the smallest of sensor networks such as the GNATSs. It was found
that this method works very well for fully connected networks; however the performance
degrades as the number of mutual neighbors reduces. This characteristic is probably
indicative of all reference broadcast schemes. The algorithm was tested both in
simulation and on the actual GNATs. While hardware issues prevented any real testing
on the GNATS, the algorithm did run on them, and appeared to work as it should.

Acknowledgements

A special thanks to Keith O’Hara for his help with the significant modifications to
the GNAT API necessary for this project.

References

[1] Tucker Balch, TeamBots Simulator. http://www.teambots.org
[2] M. Castro, B. Liskov, “Practical Byzantine Fault Tolerance,” OSDI, Feb. 1999.

[3] Chandy, M. and Lamport, L., “Distributed Snapshots: Determining Global States of
Distributed Systems,” ACM Trans. on Computer Systems, February 1985.

Axelrod 12

[4] Jeremy Elson, Lewis Girod, and Deborah Estrin, “Fine-Grained Network Time
Synchronization Using Reference Broadcasts,” OSDI 2002.

[5] Gifford, D., “Weighted Voting for Replicated Data,” ACM Symp. on Operating
Systems Principles, December 1979.

[6] L. Lamport. “Time, clocks, and the ordering of events in a distributed system.”
Communications of the ACM, 21(7):558-65, 1978.

[7] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. “MASON: A
New Multi-Agent Simulation Toolkit.” 2004. Proceedings of the 2004 SwarmFest
Workshop.

[8] D. Mills, "Network Time Protocol (Version 3) specification, implementation and
analysis," IETF RFC-1305, March 1992.

[9] Keith J. O’Hara, Daniel B. Walker, and Tucker R. Balch. “The Gnats — Low-Cost
Embedded Networks For Supporting Mobile Robots”, Third International Multi-
Robot Systems Workshop. March 2005.

[10] F. B. Schneider. “A Paradigm for Reliable Clock Synchronization,” Proc. Advanced
Seminar of Local Area Networks, Bandol, France, April 1986, p. 85—104

Axelrod 13

