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        This project’s goal was to implement a neural network based face detector as outlined in this paper: 

Rowley, H., Baluja, S., and Kanade, T., "Neural Network-Based Face Detection", Proc. IEEE Conf. on 

Computer Vision and Pattern Recognition, San Francisco, CA, pp. 203-207. 1996. There is a newer version of 

the paper with better figures here < http://www.vision.caltech.edu/CNS179/papers/Kanade98.pdf >.  The 

authors of the paper have set up a cool web demo < http://demo.pittpatt.com/ > that allows anyone to upload a 

picture and try out their detector. 

 

 

Overview 

 

        This project seeks to detect upright human faces in grayscale images with the help of a neural network. 

 The retinally connected neural network (NN) examines small windows in the image and outputs a confidence 

factor corresponding to whether or not it thinks the window contains a face.  Heuristics are then used to clean 

up the output of the network.  This algorithm is not real-time as it can take up to an hour to analyze even a 

moderately sized an image.  I created my NN detector in Matlab using it’s NNtoolbox.  I followed the paper 

pretty closely; however my implementation only used 1 NN with only 1 layer of hidden nodes.  The paper used 

multiple networks with multiple hidden layers.  My network achieved a face detection rate of 41.3% and a false 

positive rate of 0.00044%.  These percentages are much lower than the paper's, therefore, there are some 

parameters of the algorithm that can still be optimized. 

 

 

Training Procedure 

 

        1. Gather a database of face images.  I got mine from the Yale < 

http://cvc.yale.edu/projects/yalefaces/yalefaces.html > and CalTech < http://www.vision.caltech.edu/html-

files/archive.html > databases.  The faces need to be upright and be 20x20 pixels in size (with approx 12 pixels 

between the centers of the eyes).  The point halfway between the center of the eyes and the upper lip should be 

in the center of the image.  The paper then created 15 images from each face by mirroring, rotating, scaling, and 

translating.  I only mirrored each face.  I ended up with 624 face images.     

 

        2.  Pre-process the faces to eliminate some lighting variation.  This involves masking the corners, fitting a 

linear function to the data, and equalizing.  The process is shown below. 

 

 



 

        3. Create 1000 images of random noise and apply the same pre-processing to these as well.     

 

        4. Train the network to classify faces as 1 and non-faces as -1.  The network architecture can be seen 

below. 

  

 
 

        Note that the 4 upper hidden nodes each take only a 10x10 quadrant of the input window as their input. 

 The middle 16 hidden nodes each take only a 5x5 pixel region.  And the bottom nodes take a 5x20 pixel 

horizontal slice of the window.  Because Matlab does not allow the inputs of a NN to be different, I had to do an 

ugly and expensive hack.  The entire image was fed to all inputs, then the unwanted parts of the image were 

masked out of the input weights.  This masking was done after each iteration of training.  This probably 

considerably slowed the network down.  I was essentially carrying around 9000 network weights for no reason. 

 (Only 1527 weights mattered).   

 

        5. Run the network on images that are known to contain no faces.  I used CalTech’s background database < 

http://www.vision.caltech.edu/html-files/archive.html > for this.  Note that the network must be run on all pixel 

locations in an image pyramid where the images are scaled by a factor of 1.2.  The query window must also be 

put through the same pre-processing as the training images.  Save the false positives to add to the non-faces 

training set.  Go to step 4.  This process of retraining with false positives is called bootstrapping. 

 

 

Notes on my Training 

 

        I went through these steps a few times and towards the end, the false positives began looking pretty face-

like.  I ended up with 6219 non-face images.       

 

        This is one instance where I didn’t follow the paper.  I observed that if I train with the entire set of non-

faces, the network learns to classify everything as a non-face.  This is possibly because there are so many more 

non-faces than faces.  The network training finds an easy local minima by classifying everything as -1.  It is 

possible that this may only be an issue for the particular training algorithm I used.  I needed to use scaled 

conjugate gradient backpropagation (trainscg) instead of the usual Levenberg-Marquardt backpropagation 

(trainlm).  This was due to the large memory requirements of LM backprop.   



 

        I avoided this sub-optima by choosing a small subset of the non-faces to use every training iteration.  I 

randomly choose non-faces to achieve a 50/50 ratio of faces to non-faces.  Once I gathered enough non-face 

examples, I trained a new network from scratch with 10000 epochs.  10000 epochs did better than 5000, but 

50000 seemed to overfit.  The only downside I can see to training the network in this manner is slower 

convergence.  Here are some output graphs after training.   

 
Mean squared error during training 

 

 
Histogram of the classified training images  

(only non-faces). 

 
Histogram of the classified training images 

 (only faces). 

 

 

Testing Procedure 

 

        Testing involves running the network on every pixel location of the image pyramid and recording when the 

output of the network is above a threshold.  The paper used 0 as a threshold, but my algorithm finds way too 

many false positives at this value.  I used a threshold of 0.8 for all my test runs which seemed to give good 

balance between face detection and false positives.  From examination of the histogram below, it might seem 

odd that a value closer to 0.5 was not chosen as the threshold.  This is because the number of window 

evaluations over the entire image is so high that the false positive rate must be very low.  However, my results 



indicate that a lower threshold would have been beneficial. 

 

 
Both face and non-face histograms plotted together 

for comparison 

 

        After the matches in the image have been found, some post-processing can significantly reduce the number 

of false positives and merge overlapping predictions.  This is the output of a typical run: 

 

 
 

        Note that the colors of the boxes represent the output of the NN.  With red being the strongest face 

prediction at roughly 1.4, and blue being the weakest at 0.8.  This image illustrates the 2 heuristics that can be 

used to clean up the face predictions.  The first heuristic is that real faces have multiple matches.  To take 

advantage of this, the locations of the matches are “spread out” and added together yielding an image like this: 

 



 
 

        The peak of every hill in this image becomes the location of a new face prediction box.  This new box will 

have the average size of the boxes close to it, and a confidence weight corresponding to the height of the hill.  

Note: the paper computed the centroid of these hills in a window to determine the center, while I used hill 

climbing.  The output of this agglomeration phase is shown below.   

 

 
 

        The next heuristic that can be applied is that faces rarely overlap in an image.  When overlapping boxes are 

detected, the higher confidence weight box is kept.  This produces the final output: 

 



 
 

        On a funny side note, the “alien” in this image with perhaps the most un-humanlike appearance actually 

received the highest face confidence!   

 

 

Results 
 

        I used a completely different set of images to test my network than was used for training.  I used the CMU-

VASC dataset < http://vasc.ri.cmu.edu/idb/html/face/frontal_images/index.html > just like the paper.  Because I 

didn’t have enough time to run the network on the entire database, I only ran it on the images shown in figure 3 

of the paper, plus a few extras.  This allows a good qualitative comparison as seen below.  My results are in the 

left column, and the paper's results are in the right column.   

My Results Paper Results 

 
 



 
 

 

 

  

 
 



 

 

 

 

 
 

  



 

 

 
 

  



  

 

 

 

 

 

 



 

 

 
 

 
 

 
 



 

 

    These are the extra images that I tested with.  I don't have the paper's results on these images. 

 

        

 

         

 

            

 



 

     

        I counted the missed faces and false detects in the testing images for comparison with the paper.  In the 

table below, my network is compared against the paper's single networks with heuristics.   

 

System Detect Rate False Detect Rate 

My network 

(27 hidden nodes, 1527 connections) 
41.3 % 1 / 227580 

Paper's network 1 

(52 hidden nodes, 2905 connections) 
90.9 % 1 / 98459 

Paper's network 2 

(78 hidden nodes, 4357 connections) 
89.5 % 1 / 115576 

Paper's network 3 

(52 hidden nodes, 2905 connections) 
89.5 % 1 / 85230 

Paper's network 4 

(78 hidden nodes, 4357 connections) 
90.7 % 1 / 78992 

 

 

Analysis and Conclusion 

 

       Because both my detect rate and false detect rate are much lower than the paper's, it is safe to say that I ran 

my network with too high of a threshold.  The other factors that probably hurt my performance include my 

network having fewer hidden nodes and a smaller training set.  Taking this into consideration, I think my 

network compared well to the paper's networks.  It seems neural networks can provide good face detectors, 

however their speed needs to be improved.  Matlab's NNtoolbox made it easy to work with images and the 

network, except for its input limitations that forced me to use more inputs than needed.  This severely slowed 

down the network. 

 

 

 

 


