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Abstract 

Decision trees are simple and fast data classifiers with the 
capability of producing human readable output; however they are 
constrained to single attribute splits, limiting their expressibility.  
Neural nets have a much richer hypothesis space, but are slow and 
prone to overfitting.  We propose the Perceptron-Based Oblique 
Tree (P-BOT), a hybrid extension of the C4.5 decision tree.  P-
BOT addresses the standard decision tree's limitations by placing 
simple neural networks in the decision nodes.  This approach 
combines the advantages of decision trees and neural nets.  
Empirical results back this claim.  

1  Introduction 

Decision trees are simple and fast data classifiers with the nice property of 
producing readable output and finding the highest info gain attributes to use; 
however, they are subject to overfitting, and pruning does not yield high accuracy. 
One reason for these limitations is the fact that decision trees can only classify data 
with regards to a single parameter per node. Often, it is the relationship between 
multiple parameters that can more accurately classify the data.  On the other hand, 
artificial neural networks look at all parameters simultaneously, including 
extraneous attributes that have no effect on the outcome.  As a result, they tend to be 
slow and also suffer from overfitting.  

There have been efforts to combine decision trees with other learners. Murphy et al. 
have developed the OC1 algorithm in [1].  Their algorithm splits data based on a 
hyperplane that is a linear combination of the attributes.  With a conventional 
decision tree, these hyperplanes are confined to be axis-parallel.  They have used a 
perturbation algorithm to search through the space of possible hyperplanes and they 
used several impurity measures as goodness measures for a split. A hyperplane can 
easily be built by using a neural network that has no hidden layers, using a distance 
squared error metric. Using a neural network also enables creating multiple 
hyperplanes for a single decision node. 

Utgoff and Brodley have developed an algorithm that they describe as a linear 
machine decision tree in [2]. Their algorithm is also a multivariate tree that uses 
linear machines at each node. In terms of functionality, its difference from the OC1 
algorithm is that it can handle more than two classes, so a node can have as many 
children as the number of classes. 



 

Another hybrid learner was developed by Kohavi in
 
[3]. His algorithm, NBTree, 

uses Naïve-Bayes and decision trees together.  A regular decision tree is built and 
pruned, then Naïve-Bayes is run on the leaf nodes.  The NBTree algorithm was 
shown to have higher accuracy than both Naïve-Bayes and C4.5 for many datasets. 

There have been efforts to improve the speed and reduce the complexity of neural 
networks. Hidden layers raise a problem in speed by increasing the number of 
weight updates, and create a problem in complexity by introducing what is referred 
to as the moving target problem. Fahlman and Lebiere (1990) have come up with the 
Cascade-Correlation Learning Architecture to address the problem in [4]. They add 
the hidden nodes to the network incrementally, and the input weights are frozen at 
the time of creation. This makes the node a fixed feature and eliminates the moving 
target problem. It also helps increase speed by limiting the number of weight 
updates to the number of non-output nodes times the number of output nodes. 

In this paper, we describe a method to implement a decision tree classifier that uses 
simple neural nets in its internal nodes. 

2  Perceptron-Based Oblique Tree (P-BOT) 

2 .1  Descr ipt ion  o f  the  Algor i thm  

At each node, the tree calculates information gain for continuous and discrete 
attributes as described in the C4.5 algorithm. Gain values are divided by intrinsic 
information values to penalize for attributes that cause a high number of splits as 
described in [5]. 

In addition to considering attribute-based splits, our algorithm also runs a small 
neural net in each node in the tree.  Like all decision tree splits, this neural network 
is run only on the portion of the dataset that can reach that node. It is constructed as 
follows: There is one input node corresponding to every continuous attribute 
normalized between zero and one. For the discrete attributes, there is an input node 
for every possible attribute value. By setting the appropriate discrete input node to 
one and the other input nodes for that attribute to zero, it allows the NN to take 
discrete attributes as input.  The net has no hidden nodes, and one output node for 
each possible classification. The classification of a data point by the neural net is 
determined by the output node with the highest output. This produces a system that 
creates n hyperplanes that separate the dataset into n subsets, where n is the number 
of classes. The neural network was implemented using Gideon Pertzov's code in [6]. 

The local neural network is trained for a fixed number of iterations, using distance-
squared error and gradient descent to update the weights.  The information gain of 
the split is evaluated in the same manner as any other C4.5 split.  Therefore the 
neural network in our algorithm tries to increase information gain by reducing 
classification error. Intrinsic information measures are also factored in to punish the 
splits that create many children. Our algorithm uses reduced-error pruning to 
prevent overfitting. Ten percent of the training set is designated as the validation set 
for pruning.   

Theoretically, perceptron splits should be able to represent and surpass the 
continuous C4.5 type splits; however, we found that including attribute splits tended 
to improve the overall accuracy of the tree.  Therefore we still use the single 
attribute splits.  Including single attribute splits provides an additional gain by 
reducing the number of attributes in children nodes.   

Figure 1 shows the structure of P-BOT on an example dataset that has one discrete 
attribute with three values, two continuous attributes, and three classes. Nodes at 
higher levels are drawn larger to reflect that they have more data points. The root 
node uses a neural network split. The left child splits on a discrete attribute. The 



 

subset of data at the right child contains only two classes, so the neural network is 
created accordingly. 

 

Figure 1: Illustrative example of P-BOT 

2 .2  Descr ipt ion  o f  the  Hypothes i s  Space  

By building hyperplanes recursively, our algorithm separates the data space into 
convex polytopes, which is defined as, “a finite region of n-dimensional space 
enclosed by a finite number of hyperplanes” in [7]. Therefore the hypothesis space 
for our algorithm includes any combination of non-intersecting convex polytopes 
that cover the entire data space.   

Our hypothesis space resembles that of decision trees more closely than neural nets 
in that the decision tree hypothesis space is effectively a subset of ours.  While our 
algorithm handles all convex polytopes, a typical decision tree is limited to 
polytopes that are rectangular in form.  Multi-layered neural nets, which divide the 
data along some continuous n-dimensional function, are significantly different. 
Figure 2 depicts the hypothesis spaces for decision trees and P-BOT for a dataset 
with two continuous attributes and three classes. 

 

Figure 2: Comparison of hypothesis spaces 



 

2 .3  Theore t i ca l  Foundat ion  

2 .3 .1  Dif f erence  f rom a  mul t i - layer  neura l  ne t  

One may think that by forming a tree of simple neural nets, we are still essentially 
adding multiple classifiers together, resulting in a larger classifier that’s no different 
than a neural network. However, this structure is different from a full neural 
network because all nodes except the root node use only a subset of the original 
dataset.  In a traditional neural network, every example in the dataset is responsible 
for the training of the network at any time and any location in the net. For our 
hybrid tree, only examples reaching a particular node in the tree affect the weights 
of the net.  Additionally, by simplifying the net, we greatly reduce the overall 
running time of the algorithm.  Our results back this claim. 

With this in mind, it is easy to see the similarity between our algorithm and other 
meta-algorithms, such as boosting and cascading. By increasing the importance of 
points that have been misclassified, boosting focuses on misclassified data. For the 
neural net, information gain indicates the quality of the classification. If a child has 
only one classification, it is going to have low entropy and high information gain, 
and the tree will not go deeper at that node. At nodes that still have high entropy, 
the neural nets will keep running until the classes are reasonably separated from 
each other. Once the tree classifies a group of examples successfully, it stops paying 
attention to them, and it only pays attention to misclassified examples for its weight 
updates. 

Our algorithm differs from boosting and cascading in its approach to classifying 
datasets.  Boosting weights the dataset to increase focus on misclassifications.  In 
contrast, our hybrid tree breaks the dataset into smaller subsets.  The smaller subsets 
facilitate the tree in focusing on the correct decision boundaries.  Cascading works 
similarly here, but it emphasizes complete elimination of false negatives, resulting 
in what would visually resemble a chain instead of a tree. This makes it optimal in 
situations where a disproportionably large part of the samples are of a single 
classification.  Our algorithm allows for false classifications at any point, and deals 
with them by simply extending the tree deeper. 

2 .3 .2  Dif f erence  f rom the  OC1  and  LMDT Algor i thms  

The fundamental difference between our algorithm and OC1 arises for datasets with 
more than two classes. Regardless of the dataset, OC1 builds a single hyperplane at 
each node, resulting in binary splits. Our algorithm takes the number of classes into 
account and creates as many children. This makes our tree more efficient for multi-
class datasets.  

The other major difference is the construction of the hyperplane(s). OC1 uses a 
perturbation algorithm, a random parallel search based on impurity measures, to 
approximate the optimal hyperplane. Our algorithm uses gradient descent to 
minimize classification error to estimate the hyperplane(s). Additionally, our 
approach still considers axis-parallel, attribute-based splits in addition to 
hyperplane-based splits.  Both OC1 and LMDT do not consider single attribute 
splits. 

Our algorithm also differs from LMDT in the way it builds the separating 
hyperplanes. Our algorithm uses simple gradient descent search using the derivative 
of error, as done in neural networks for a set number of epochs.  LMDT uses update 
rules for the weights of the hyperplane set. It focuses on termination conditions and 
on distance weighting the errors for updates. Instead of focusing on getting the best 
linear fit, our algorithm focuses on speeding up computation time for the neural 
network. Our algorithm may or may not build the same hypothesis, but our goal is to 
build the hypothesis in a shorter time.  



 

2 .3 .3  Avo id ing  l inear i ty  

Since we are using a linear classifier in the nodes, it is necessary to show that we 
are not producing a sum of linear systems that is linear itself. We show this by 
running our algorithm on an XOR dataset, which is not linearly separable.  The 
resulting tree had a neural net that simulated the NAND function at the root. One 
child was a leaf and the other was a neural net that simulated NOR.  The combined 
affect is an XOR function, which the tree modeled with 100% accuracy. 

3  Experiments  

3 .1  Set t ings  

We tested our algorithm on several datasets from the UCI Machine Learning 
Repository: mushroom, voting, pen-digits, credit screening, waveform with noise, 
letter recognition, and income.  These datasets have a range of distinguishing 
characteristics.  Some have completely discrete attributes (mushroom, voting), some 
are all continuous (waveform, pen-digits, letter recognition), and some are a 
combination of the two (income, credit screening).  While most are binary 
classification problems, pen-digits, waveform, and letter recognition are multi-class.  
Letter recognition is especially multi-class, with 26 possible classifications. 

For the credit screening dataset we removed the data points with unknown values, 
and for the mushroom dataset we removed the stalk-root attribute because it 
contained mostly unknown values.  This is because our algorithm cannot currently 
handle unknown values.  For baseline algorithms we chose decision trees and neural 
nets.  Both of these algorithms were run in the Weka environment as J48 and Multi-
Layer-Perceptron.  We used J48, which implements C4.5 with pruning, and trained 
the neural network with one hidden layer. For both classifiers, we used the default 
settings to reflect typical usage. For the NN, the hidden layer contained (# attributes 
+ # classes) / 2 nodes, learning rate was 0.3, and 500 epochs were used. 

The results are depicted in Table 1. 

3 .2  Resul t s  /  Ana ly s i s  

Table 1: Relative Test Error and Running Time 

Dataset 
J48 Error (%) 
/ Time (sec) 

NN Error (%) / 
Time (sec) 

P-BOT Error 
(%) / Time (sec) 

Mushroom 12.38%  /  1 10.85%  /  1562 7.09  /  90 

Voting 6.25%  /  1 5.68%  /  296 4.55%  /  4 

Pen-Digits 7.78%  /  2 7.98%  /  1085 6.75%  /  789 

Credit 
Screening 

15.96%  /  1 19.15%  /  398 15.43%  /  8 

Income 11.43%  /  2 16.40%  /  2155 15.79%  /  4844 

Waveform 
w/ Noise 

25.60%  /  2 15.20%  /  1663 17.95%  /  779 

Letter 
Recognition 

28.10%  /  2 23.70%  /  1579 26.30%  /  254 

 



 

For the pen-digits, mushroom, voting, and credit screening datasets, P-BOT had 
lower test error than both J48 and NN. Our performance on these datasets can be 
attributed to our algorithm not overfitting the data.  Because our perceptron nodes 
can represent the decision boundaries better than axis parallel splits, it allows our 
trees to be shorter.  Shorter trees are more general and better by Occam’s Razor.  
For all of the datasets, our trees contained significantly fewer nodes than J48.  
Additionally, our tree generally did best on datasets containing mostly discrete 
attributes.  Both voting and mushroom datasets are of this type. It is difficult to 
make any strong claims in terms of the kinds of datasets P-BOT does well on, since 
these four datasets have a wide range of characteristics.  

For the letter recognition and waveform datasets, P-BOT consistently achieved 
higher testing accuracy than J48, but took longer to run.  The opposite was true for 
the neural net; it had higher error but shorter wall clock time. A similar trend was 
present with the income dataset; however here P-BOT had a lower error than neural 
nets, and a higher error than J48.  Once again though, P-BOT had an error rate 
between the two baselines.  The mixed performance on these datasets confirms our 
earlier expectations. By hybridizing two approaches, we were expecting to get an 
average of their performance in terms of accuracy and speed. The hybrid tree has 
more expressive power than a decision tree, but at the cost of computation time. On 
the other hand, a full neural network has more expressive power than our tree.  It 
can draw non-linear boundaries in the feature space as compared with the linear 
boundaries of P-BOT.  P-BOT separates the feature space into many sections to 
approximate such non-linear boundaries. 

We empirically observed test accuracy for different epoch values of our neural nets 
to see whether overfitting occurs at the node level.  Results for the voting dataset 
are shown in Figure 3 and reveal no overfitting.  Analysis of the credit screening 
dataset revealed similar results.  Since these neural nets are capable of linear 
separations, it is impossible to overfit data that are linearly inseparable.  Pruning 
with a validation set helps avoid overfitting at the tree level. P-BOT consistently 
achieved lower test error after pruning. 

 

Figure 3: Test error as a function of neural net epochs 

P-BOT was considerably slower than J48, even when perceptron based splits were 
disabled.  This is most likely due to a suboptimal implementation of C4.5 used by 
our hybrid tree, specifically when processing continuous attributes.  A more 
optimized splitting algorithm may lower our running time significantly.  For most 
datasets, enabling the perceptron-based splits did not add much to the running time 
but reduced error significantly.  In fact, on pen-digits and waveform (both with all 



 

continuous attributes and non-binary classifications) adding the perceptron actually 
sped up the algorithm.  This result occurred because the tree can have splits with 
more than two children.  On datasets with many discrete attributes, the perceptron 
predictably slowed down the run time.  
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Figure 4: P-BOT with and without perceptron splits 

We explored using Naïve-Bayes classifiers at leaf nodes to increase accuracy.  In 
cases with all discrete parameters, adding Naïve-Bayes did not have a significant 
positive or negative effect.  Preliminary tests on continuous datasets indicate that 
adding Naïve-Bayes improves accuracy slightly when the perceptrons are not 
trained much; however, accuracy drops as the perceptron is trained beyond about 50 
epochs.  This may be because as the perceptron nodes fit the data more closely, any 
benefit obtained by Naïve-Bayes is eliminated. 

4  Conclusions and Future Work 

Our P-BOT algorithm is a simple way to combine the advantages of decision trees 
and neural networks.  When compared with typical decision trees, it is consistently 
more accurate.  With neural nets, it usually achieves an accuracy that is either 
higher, or at least comparable, while running significantly faster.  Furthermore, our 
algorithm appears to be robust against overfitting, since varying the number of 
perceptron training epochs within decision nodes had little impact on accuracy. 

In the future, we seek to explore what exact parameters result in higher accuracy 
and faster runtime.  For example, since P-BOT's accuracy does not seem to change 
much with the number of perceptron training epochs, how few epochs can be used 
without jeopardizing accuracy?  Our results were typically obtained at 100 epochs, 
but running fewer would reduce the overall runtime.  In this situation, would adding 
in Naïve-Bayes classifier for leaf nodes be a good policy?  If the trends observed in 
our preliminary trials hold, this many be the case; however more research is 
necessary to in order to reach a conclusive answer.  Finally, we would like to 
empirically compare our algorithm with other hybrid algorithms, such as OC1 and 
LMDT.  Implementations of these algorithms were not readily available so such a 
comparison was not possible at this time. 
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